generated from vinthony/project-page-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
241 lines (215 loc) · 11.7 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="DESCRIPTION META TAG">
<meta property="og:title" content="SOCIAL MEDIA TITLE TAG"/>
<meta property="og:description" content="SOCIAL MEDIA DESCRIPTION TAG TAG"/>
<meta property="og:url" content="URL OF THE WEBSITE"/>
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
<meta property="og:image" content="static/image/your_banner_image.png" />
<meta property="og:image:width" content="1200"/>
<meta property="og:image:height" content="630"/>
<meta name="twitter:title" content="TWITTER BANNER TITLE META TAG">
<meta name="twitter:description" content="TWITTER BANNER DESCRIPTION META TAG">
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X600-->
<meta name="twitter:image" content="static/images/your_twitter_banner_image.png">
<meta name="twitter:card" content="summary_large_image">
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="KEYWORDS SHOULD BE PLACED HERE">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>NJUVision/UNIQ</title>
<link rel="icon" type="image/x-icon" href="static/images/favicon.ico">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-MML-AM_CHTML"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [['$','$'], ['\\(','\\)']],
processEscapes: true
}
});
</script>
<script src="static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="xtitle is-1 publication-title">UNIQ: Unsupervised Point Cloud Quality Assessment Via Natural Statistics Modeling</h1>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<span class="author-block">
<a href="#" onclick="window.location.href='mailto:' + 'lijiaxin' + '@' + 'smail.nju.edu.cn'; return false;">Jiaxin Li</a></span>
<span class="author-block">
<a href="#" onclick="window.location.href='mailto:' + 'zhangjunzhe' + '@' + 'stu.hznu.edu.cn'; return false;">Junzhe Zhang</a></span>
<span class="author-block">
<a href="#" onclick="window.location.href='mailto:' + 'chentong' + '@' + 'nju.edu.cn'; return false;">Tong Chen</a><sup></sup></span>
<span class="author-block">
<a href="#" onclick="window.location.href='mailto:' + 'chenhao1210' + '@' + 'nju.edu.cn'; return false;">Hao Chen</a><sup></sup></span>
<span class="author-block">
<a href="#" onclick="window.location.href='mailto:' + 'DandanDing' + '@' + 'hznu.edu.cn'; return false;">Dandan Ding</a><sup></sup></span>
<span class="author-block">
<a href="#" onclick="window.location.href='mailto:' + 'mazhan' + '@' + 'nju.edu.cn'; return false;">Zhan Ma</a>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://vision.nju.edu.cn/main.psp" target="_blank">NJU Vision Lab</a></span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<span class="link-block">
<!-- <a href="https://arxiv.org/pdf/<ARXIV PAPER ID>.pdf" target="_blank"
class="external-link "> -->
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
<!-- </a> -->
</span>
<!-- Supplementary PDF link -->
<span class="link-block">
<!-- <a href="static/pdfs/supplementary_material.pdf" target="_blank"
class="external-link "> -->
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Supplementary</span>
<!-- </a> -->
</span>
<!-- Github link -->
<span class="link-block">
<a href="https://github.com/LiJacci/UNIQ_Code" target="_blank"
class="external-link ">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Paper abstract -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Effective Point Cloud Quality Assessment (PCQA) is vital in optimizing the Quality of Experience at the system level. However, existing PCQA approaches often depend on original reference point cloud samples or large datasets with mean opinion score (MOS) labels, limiting their practicality and adaptability across diverse datasets. To address these challenges, we propose a novel UNsupervIsed Quality (UNIQ) index. This index unifies quality prediction in both No-Reference (NR) and Reduced-Reference (RR) modes by leveraging the statistical characteristics of natural 3D scenes, thereby eliminating the need for full-reference data or MOS labels. In NR mode, UNIQ assesses geometry and attribute distortions by measuring the Mahalanobis distance between the statistical parameters of quality-aware geometric and attributive features from pristine and distorted point clouds. In RR mode, it computes the absolute differences between the statistical parameters of the reference and the corresponding distorted point clouds for their respective geometry and attribute components. These geometry and attribute distances are then linearly weighted and normalized by the density factor to generate the final index. Extensive experiments demonstrate that UNIQ achieves competitive performance and exhibits strong generalization to unseen datasets, even surpassing some MOS-supervised methods. This makes UNIQ a promising solution for practical applications, such as point cloud streaming, where MOS labels or full-reference data are often unavailable.
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<!-- overview -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Overview</h2>
<div class="content has-text-justified">
<ul>
<li>For the first time, UNIQ integrates the NR and RR models within a unified framework through a carefully designed distance calculation approach upon natural statistics of quality-aware content features aggregated from the reference and impaired point clouds. </li>
<li>UNIQ carefully selects and aggregates features based on the stage-wise processing mechanism of the HVS, i.e., fundamental visual features extracted at the initial stage and then density guided normalization at the secondary stage. Notably, to the best of our knowledge, the density factor is introduced for the first time in UNIQ to account for its perceptual impact.</li>
<li>Compared to existing PCQA approaches, the UNIQ eliminates the need for MOS labels or full-reference original data and exhibits competitive performance and superior generalization to unseen distortions across various datasets.</li>
</ul>
</div>
</div>
</div>
</div>
</section>
<!-- End overview -->
<!-- framework -->
<section class="hero is-small">
<div class="hero-body">
<div class="container has-text-centered">
<img src="static/images/framework_ou.jpg" alt="MY ALT TEXT" style="max-width: 50%; height: auto;" />
<p>
The framework of our UNIQ.
</p>
</div>
</div>
</section>
<!-- End framework -->
<!-- method -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Main Steps</h2>
<div class="content has-text-justified">
<ul>
<li><strong>Block partition:</strong>The input point cloud is divided into smaller processing patches. </li>
<li><strong>Statistics Aggregation:</strong>Quality-aware features are extracted, and their statistical parameters are derived in parallel for all patches. </li>
<li><strong>Quality Estimation:</strong>The statistical parameters are compared either against the global pristine distribution or the patch-wise metadata encapsulated from the original reference sample to derive the index. </li>
</ul>
</div>
</div>
</div>
</div>
</section>
<!-- End method -->
<!-- perform -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Performance and Generalization</h2>
</div>
</div>
</div>
</section>
<!-- End perform -->
<!-- performance -->
<section class="hero is-small">
<div class="hero-body">
<div class="container has-text-centered">
<img src="static/images/performance_nr.jpg" alt="MY ALT TEXT" style="max-width: 50%; height: auto;" />
<img src="static/images/general.jpg" alt="MY ALT TEXT" style="max-width: 50%; height: auto;" />
<img src="static/images/performance_rr.jpg" alt="MY ALT TEXT" style="max-width: 50%; height: auto;" />
</div>
</div>
</section>
<!-- End performance -->
<!--BibTex citation -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>BibTeX will be updated upon acceptance.</code></pre>
</div>
</section>
<!--End BibTex citation -->
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
</body>
</html>