-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_in_problems.cpp
204 lines (185 loc) · 5.94 KB
/
build_in_problems.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include "build_in_problems.h"
Knapsack::Knapsack(std::vector<int> values,std::vector<vector<int>> weights, vector<int> Wmax, int const Borne){
nb_var = values.size();
w = weights;
v = values;
max = 0;
dt = values[0];
int bin_var_dom_size = 1;
for (int i=0; i < nb_var;i++){
bin_var_dom_size *= 2;
max += v[i];
domaines.push_back({0,1});
contraintes_par_var.push_back({});
for (int j=i+1; j < nb_var;j++){
if (v[i] != v[j]){
dt = min(dt,abs(values[i]-values[j]));
}
}
}
domaines.push_back({});
contraintes_par_var.push_back({});
for (int i=0;i < bin_var_dom_size;i++){
bool b = value_criteria(i,v)>=Borne;
for (int j=0; j<w.size();j++){
b = b and value_criteria(i,w[j])<=Wmax[j];
}
if(b){
domaines[nb_var].push_back(i);
}
}
nb_var += 1;
int power = 1;
for (int i=0; i < nb_var - 1;i++){
if (i>0){
power *= 2;
}
Contrainte c = Contrainte(i,nb_var-1);
for (auto d : domaines[nb_var-1]){
c.ajoute_relation(d/power % 2,d);
}
contraintes.push_back(c);
contraintes_par_var[i].push_back(contraintes.size()-1);
contraintes_par_var[nb_var-1].push_back(contraintes.size()-1);
contraintes_communes.insert(pair<pair<int,int>,int>({i,nb_var-1},contraintes.size() - 1));
}
arbre = new Arbre_dom(domaines, contraintes, contraintes_par_var, contraintes_communes);
}
Knapsack::Knapsack(Knapsack* knapsack,int B){
nb_var = knapsack->nb_var;
domaines = knapsack->domaines;
max = knapsack->max;
dt = knapsack->dt;
v = knapsack->v;
w = knapsack->w;
contraintes = knapsack->contraintes;
contraintes_par_var = knapsack->contraintes_par_var;
contraintes_communes = knapsack->contraintes_communes;
arbre = new Arbre_dom(domaines, contraintes, contraintes_par_var, contraintes_communes);
// change the domain of the value of the criteria
std::vector<int> new_dom = {};
for (auto d : domaines[nb_var-1]){
if (value_criteria(d,v) >= B){
new_dom.push_back(d);
}
else{
for (auto c : contraintes_par_var[contraintes_par_var.size()-1]){
contraintes[c].supprime_relation(0,d);
contraintes[c].supprime_relation(1,d);
}
}
}
domaines[domaines.size()-1] = new_dom;
}
int value_criteria(int bin,vector<int> v){
int val = 0, b = bin, cpt = 0;
while (b != 0){
if (b % 2 == 1){
val += v[cpt];
}
cpt += 1;
b /= 2;
}
return val;
}
int Knapsack::get_value_solution(std::vector<int> s){
int val = 0;
for (int i = 0; i< nb_var-1;i++){
val += v[i]*s[i];
}
return(val);
}
vector<int> solve_max_knapsack(std::vector<int> v,std::vector<vector<int>> w, std::vector<int> Wmax){
int B_inf = calcul_glouton_knapsack(v,w,Wmax);
Knapsack* knapsack = new Knapsack(v,w,Wmax,B_inf);
vector<int> sol;
while (not knapsack->domaines[knapsack->nb_var-1].empty()) {
//sol = knapsack->solve(bt_heuristic_var::varlargest, bt_heuristic_val::vallargest, false, look_ahead::forward_checking);
sol = knapsack->solve(bt_heuristic_var::largest_domain, bt_heuristic_val::largest, false, look_ahead::forward_checking);
B_inf = knapsack->get_value_solution(sol);
knapsack = new Knapsack(knapsack,B_inf+knapsack->dt);
}
return sol;
}
bool cmp_second_of_pair(std::pair<int, double>& a, std::pair<int, double>& b){
return a.second < b.second;
}
void sort(map<int, double>& M){
vector<pair<int, double> > A;
for (auto& it : M) {
A.push_back(it);
}
sort(A.begin(), A.end(), cmp_second_of_pair);
}
int calcul_glouton_knapsack(std::vector<int> v,std::vector<vector<int>> w, vector<int> Wmax){
std::map<int,double> ratio;
for (int i=0; i<v.size();i++){
ratio[i] = 0;
for (int j=0;j<w.size();j++){
ratio[i] += w[j][i]/v[i];
}
}
sort(ratio);
vector<int> s;
for (int j=0;j<w.size();j++){
s.push_back(0);
}
int c = 0;
for (auto& it : ratio){
bool b = true;
for (int j=0;j<w.size();j++){
b = b and (s[j]+w[j][it.first] <= Wmax[j]);
}
if(b){
c += v[it.first];
for (int j=0;j<w.size();j++){
s[j] += w[j][it.first];
}
}
}
return c;
}
void knapsack_problems(int n, vector<int> &v, vector<vector<int>> &w, vector<int> &W){
if (n==1){
w = {{23,31,29,44,53,38,63,85,89,82}};
v = {92,57,49,68,60,43,67,84,87,72};
W = {165};
}
if (n==2){
w = {{12,7,11,8,9}};
v = {24,13,23,15,16};
W = {26};
}
if (n==3){
w = {{56,59,80,64,75,17}};
v = {50,50,64,46,50,5};
W = {190};
}
if (n==4){
w = {{31,10,20,19,4,3,6}};
v = {70,20,39,37,7,5,10};
W = {50};
}
if (n==5){
w = {{25,35,45,5,25,3,2,2}};
v = {350,400,450,20,70,8,5,5};
W = {104};
}
if (n==6){ //optimal weight of 169
w = {{41,50,49,59,55,57,60}};
v = {442,525,511,593,546,564,617};
W = {170};
}
if (n==7){ // optimal profit of 1458
w = {{70,73,77,80,82,87,90,94,98,106,110,113,115,118,120}};
v = {135,139,149,150,156,163,173,184,192,201,210,214,221,229,240};
W = {750};
}
if (n==8){ // optimal profit of 13549094
w = {{382745,799601,909247,729069,467902,44328,34610,698150,823460,903959,853665,551830,
610856,670702,488960,951111,323046,446298,931161,31385,496951,264724,224916,169684}};
v = {825594,1677009,1676628,1523970,943972,97426,69666,1296457,1679693,1902996,1844992,1049289,
1252836,1319836,953277,2067538,675367,853655,1826027,65731,901489,577243,466257,369261};
W = {6404180};
}
}