-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
106 lines (89 loc) · 3.28 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
## Importing Packages
import streamlit as st
import pandas as pd
import numpy as np
from credit_app import credit_page
import faiss
from sentence_transformers import SentenceTransformer
st.title("EmbeddingBasedFashionSearch")
##Loading Samples of data
try:
data = pd.read_csv("Dataset/Myntra Fasion Clothing.csv")
data = data[:500]
loaded_placeholader = st.empty()
loaded_placeholader.success("Data Loaded")
loaded_placeholader.empty()
except:
loaded_placeholader.error("Data Loading Exception")
print("Data Loading Exception")
## Encoder Loading
def encoder_search(text):
"""
Function to encode the input text using SentenceTransformer.
Parameters:
- text (str): Input text to be encoded.
Returns:
- np.array: Encoded vector for the input text.
"""
enocder = SentenceTransformer("all-mpnet-base-v2")
search_vector = enocder.encode(text)
_vector = np.array([search_vector])
faiss.normalize_L2(_vector)
return _vector
## Results Loader
def get_results(vector,k,index):
"""
Function to retrieve search results based on the input vector.
Parameters:
- vector (np.array): Input vector for search.
- k (int): Number of top results to retrieve.
- index: Faiss index for similarity search.
Returns:
- pd.DataFrame: DataFrame containing search results.
"""
distances, ann = index.search(vector, k=k)
sim_scores = 1 / (1 + distances[0])
results = pd.DataFrame({'distances': distances[0], 'ann': ann[0],'Score': sim_scores})
merge_results_data = pd.merge(results,data,left_on='ann',right_index=True)
return merge_results_data
## Reading the vector Index
try:
index = faiss.read_index("vector_store/myntra_embedding_vector_store.index")
print("Index File Loaded")
loaded_placeholader = st.empty()
loaded_placeholader.success("Index File Loaded")
loaded_placeholader.empty()
except:
print("Index not loaded properly")
## Creating Streamlit UI
with st.sidebar:
st.subheader("Search Options")
search_text = st.text_input("Go Here...")
k = st.slider("Top Results", min_value=1, max_value=10, value=3)
gender_filter = st.radio("Filter by Gender", ["All", "Men", "Women"])
sbub = st.sidebar.button("Explore")
cred_page = st.button("About This Project")
# Main section to display results
if sbub:
# Perform the search and get results
_vector = encoder_search(search_text)
results = get_results(_vector, k, index)
if gender_filter == "Men":
results = results[results["category_by_Gender"] == "Men"]
elif gender_filter == "Women":
results = results[results["category_by_Gender"] == "Women"]
# Display results in the main section
st.markdown("## Style Finds for You")
st.markdown("---")
for sample in results.itertuples():
st.write(f"**{sample.BrandName}**")
st.write(f"Product Rating: {sample.Ratings}")
st.write(f"Product URL: {sample.URL}")
st.write(f"Product ID: {sample.Product_id}")
st.write(f"Product Category: {sample.Category}")
st.write(f"Gender: {sample.category_by_Gender}")
st.write(f"Available Size: {sample.SizeOption}")
st.write(f"Description: {sample.Description}")
st.markdown("---")
if cred_page:
credit_page()