forked from ultralytics/JSON2YOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
166 lines (130 loc) · 5.88 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import glob
import os
import shutil
from pathlib import Path
import numpy as np
from PIL import ExifTags
from tqdm import tqdm
# Parameters
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
def exif_size(img):
# Returns exif-corrected PIL size
s = img.size # (width, height)
try:
rotation = dict(img._getexif().items())[orientation]
if rotation in [6, 8]: # rotation 270
s = (s[1], s[0])
except:
pass
return s
def split_rows_simple(file='../data/sm4/out.txt'): # from utils import *; split_rows_simple()
# splits one textfile into 3 smaller ones based upon train, test, val ratios
with open(file) as f:
lines = f.readlines()
s = Path(file).suffix
lines = sorted(list(filter(lambda x: len(x) > 0, lines)))
i, j, k = split_indices(lines, train=0.9, test=0.1, validate=0.0)
for k, v in {'train': i, 'test': j, 'val': k}.items(): # key, value pairs
if v.any():
new_file = file.replace(s, f'_{k}{s}')
with open(new_file, 'w') as f:
f.writelines([lines[i] for i in v])
def split_files(out_path, file_name, prefix_path=''): # split training data
file_name = list(filter(lambda x: len(x) > 0, file_name))
file_name = sorted(file_name)
i, j, k = split_indices(file_name, train=0.9, test=0.1, validate=0.0)
datasets = {'train': i, 'test': j, 'val': k}
for key, item in datasets.items():
if item.any():
with open(f'{out_path}_{key}.txt', 'a') as file:
for i in item:
file.write('%s%s\n' % (prefix_path, file_name[i]))
def split_indices(x, train=0.9, test=0.1, validate=0.0, shuffle=True): # split training data
n = len(x)
v = np.arange(n)
if shuffle:
np.random.shuffle(v)
i = round(n * train) # train
j = round(n * test) + i # test
k = round(n * validate) + j # validate
return v[:i], v[i:j], v[j:k] # return indices
def make_dirs(dir='new_dir/'):
# Create folders
dir = Path(dir)
if dir.exists():
shutil.rmtree(dir) # delete dir
for p in dir, dir / 'labels', dir / 'images':
p.mkdir(parents=True, exist_ok=True) # make dir
return dir
def write_data_data(fname='data.data', nc=80):
# write darknet *.data file
lines = ['classes = %g\n' % nc,
'train =../out/data_train.txt\n',
'valid =../out/data_test.txt\n',
'names =../out/data.names\n',
'backup = backup/\n',
'eval = coco\n']
with open(fname, 'a') as f:
f.writelines(lines)
def image_folder2file(folder='images/'): # from utils import *; image_folder2file()
# write a txt file listing all imaged in folder
s = glob.glob(f'{folder}*.*')
with open(f'{folder[:-1]}.txt', 'w') as file:
for l in s:
file.write(l + '\n') # write image list
def add_coco_background(path='../data/sm4/', n=1000): # from utils import *; add_coco_background()
# add coco background to sm4 in outb.txt
p = f'{path}background'
if os.path.exists(p):
shutil.rmtree(p) # delete output folder
os.makedirs(p) # make new output folder
# copy images
for image in glob.glob('../coco/images/train2014/*.*')[:n]:
os.system(f'cp {image} {p}')
# add to outb.txt and make train, test.txt files
f = f'{path}out.txt'
fb = f'{path}outb.txt'
os.system(f'cp {f} {fb}')
with open(fb, 'a') as file:
file.writelines(i + '\n' for i in glob.glob(f'{p}/*.*'))
split_rows_simple(file=fb)
def create_single_class_dataset(path='../data/sm3'): # from utils import *; create_single_class_dataset('../data/sm3/')
# creates a single-class version of an existing dataset
os.system(f'mkdir {path}_1cls')
def flatten_recursive_folders(path='../../Downloads/data/sm4/'): # from utils import *; flatten_recursive_folders()
# flattens nested folders in path/images and path/JSON into single folders
idir, jdir = f'{path}images/', f'{path}json/'
nidir, njdir = Path(f'{path}images_flat/'), Path(f'{path}json_flat/')
n = 0
# Create output folders
for p in [nidir, njdir]:
if os.path.exists(p):
shutil.rmtree(p) # delete output folder
os.makedirs(p) # make new output folder
for parent, dirs, files in os.walk(idir):
for f in tqdm(files, desc=parent):
f = Path(f)
stem, suffix = f.stem, f.suffix
if suffix.lower()[1:] in img_formats:
n += 1
stem_new = '%g_' % n + stem
image_new = nidir / (stem_new + suffix) # converts all formats to *.jpg
json_new = njdir / f'{stem_new}.json'
image = parent / f
json = Path(parent.replace('images', 'json')) / str(f).replace(suffix, '.json')
os.system("cp '%s' '%s'" % (json, json_new))
os.system("cp '%s' '%s'" % (image, image_new))
# cv2.imwrite(str(image_new), cv2.imread(str(image)))
print('Flattening complete: %g jsons and images' % n)
def coco91_to_coco80_class(): # converts 80-index (val2014) to 91-index (paper)
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,
None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
None, 73, 74, 75, 76, 77, 78, 79, None]
return x