-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathNDVIStandAlone.py
88 lines (67 loc) · 2.87 KB
/
NDVIStandAlone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# -*- coding: utf-8 -*-
"""
Experimental Vegetation Index Mapping program using DJI Mavic Pro DNG (raw image) +
JPEG 16-bit combo images taken using InfraBlue Filter
This Version uses a special Broad Dual Bandpass NIR and Blue filter with a Narrow Bandpass in the Green
to Create a combo NIR Blue + Green Image Allowing for Standalone JPG to NDVI
%(c)-J. Campbell MuonRay Enterprises 2019
This Python script was created using the Spyder Editor
"""
import warnings
warnings.filterwarnings('ignore')
from scipy import misc
import imageio
import numpy as np
from matplotlib import pyplot as plt # For image viewing
#!/usr/bin/python
import getopt
import sys
import matplotlib.pyplot as plt
from matplotlib import colors
from matplotlib import ticker
from matplotlib.colors import LinearSegmentedColormap
class NDVI(object):
def __init__(self, file_path, output_file=False, colors=False):
self.image = plt.imread(file_path)
self.output_name = 'NDVI.jpg'
self.colors = ['gray', 'gray', 'red', 'yellow', 'green']
def create_colormap(self, *args):
return LinearSegmentedColormap.from_list(name='custom1', colors=args)
def create_colorbar(self, fig, image):
position = fig.add_axes([0.125, 0.19, 0.2, 0.05])
norm = colors.Normalize(vmin=-1., vmax=1.)
cbar = plt.colorbar(image,
cax=position,
orientation='horizontal',
norm=norm)
cbar.ax.tick_params(labelsize=6)
tick_locator = ticker.MaxNLocator(nbins=3)
cbar.locator = tick_locator
cbar.update_ticks()
cbar.set_label("NDVI", fontsize=10, x=0.5, y=0.5, labelpad=-25)
def convert(self):
"""
This function performs the NDVI calculation and returns an GrayScaled frame with mapped colors)
"""
NIR = (self.image[:, :, 0]).astype('float')
blue = (self.image[:, :, 2]).astype('float')
green = (self.image[:, :, 1]).astype('float')
bottom = (blue - green) ** 2
bottom[bottom == 0] = 1 # remove 0 from nd.array
VIS = (blue + green) ** 2 / bottom
NDVI = (NIR - VIS) / (NIR + VIS)
fig, ax = plt.subplots()
image = ax.imshow(NDVI, cmap=self.create_colormap(*self.colors))
plt.axis('off')
self.create_colorbar(fig, image)
extent = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
fig.savefig(self.output_name, dpi=600, transparent=True, bbox_inches=extent, pad_inches=0)
# plt.show()
def main(argv):
input_file = 'DJI_0069.JPG'
output_file = False
colors = False
blue_ndvi = NDVI(input_file, output_file=output_file or False, colors=colors or False)
blue_ndvi.convert()
if __name__ == "__main__":
main(sys.argv[1:])