forked from minghanz/monocon_na565
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
71 lines (52 loc) · 1.96 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import sys
import torch
import argparse
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from engine.monocon_engine import MonoconEngine
from utils.engine_utils import tprint, load_cfg, generate_random_seed, set_random_seed
# Arguments
parser = argparse.ArgumentParser('MonoCon Tester for KITTI 3D Object Detection Dataset')
parser.add_argument('--config_file',
type=str,
help="Path of the config file (.yaml)")
parser.add_argument('--checkpoint_file',
type=str,
help="Path of the checkpoint file (.pth)")
parser.add_argument('--gpu_id', type=int, default=0, help="Index of GPU to use for testing")
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--visualize', action='store_true')
parser.add_argument('--save_dir',
type=str,
help="Path of the directory to save the visualized results")
args = parser.parse_args()
# Some Torch Settings
torch_version = int(torch.__version__.split('.')[1])
if torch_version >= 7:
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
# Load Config
cfg = load_cfg(args.config_file)
cfg.GPU_ID = args.gpu_id
# Set Benchmark
# If this is set to True, it may consume more memory. (Default: True)
if cfg.get('USE_BENCHMARK', True):
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
tprint(f"CuDNN Benchmark is enabled.")
# Set Random Seed
seed = cfg.get('SEED', -1)
seed = generate_random_seed(seed)
set_random_seed(seed)
tprint(f"Using Random Seed {seed}")
# Initialize Engine
engine = MonoconEngine(cfg, auto_resume=False, is_test=True)
engine.load_checkpoint(args.checkpoint_file, verbose=True)
# Evaluate
if args.evaluate:
tprint("Mode: Evaluation")
engine.evaluate()
# Visualize
if args.visualize:
tprint("Mode: Visualization")
engine.visualize(args.save_dir, draw_items=['2d', '3d', 'bev'])