-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_simulation.m
244 lines (195 loc) · 8.16 KB
/
training_simulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Training Network with plasticity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%set target distribution
%target_distr = set_target(RnumClusters);
load('./data/target_distr2.mat');
%track learning
weights_error = zeros(1,nb_its);
weights_kldiv = zeros(1,nb_its);
samples_all = zeros(1,nb_its);
for its = 1:nb_its
its
%take samples
[samples,times,T] = sample_target(nb_samples,RnumClusters,target_distr);
samples_all(1+(its-1)*nb_samples:its*nb_samples) = samples;
%reset external input
dynamics_parameters;
external_input;
%variable to plot low-pass filter
x = zeros(EneuronNum,T/dt);
y = zeros(REneuronNum,T/dt);
wRE_step = zeros(size(wRE));
%Uniform sampler init
rast = zeros(neuronNum,T/dt + 1); %Matrix storing spike times for raster plots
rast_binary = zeros(neuronNum,T/dt + 1); %same but with binary numbers
lastAP = -50 * ones(1,neuronNum); %last action potential for refractor period calculation (just big number negative put)
memVol = Vreset+(V_T-Vreset)*rand(1,neuronNum);
v = zeros(1,neuronNum);
%Read-out init
rast_R = zeros(RneuronNum, T/dt+1);
rast_binary_R = zeros(RneuronNum, T/dt+1);
lastAP_R = -50*ones(1,RneuronNum);
memVol_R = Vreset+(V_T-Vreset)*rand(1,RneuronNum);
v_R = zeros(1,RneuronNum);
k = 1;
for i =2:T/dt
if its<=400
if k<=nb_samples && i*dt == times(k)
rRx((samples(k)-1)*sizeClusters+1:samples(k)*sizeClusters) = rRex + 30;
elseif k<=nb_samples && i*dt == times(k) + 50
rRx((samples(k)-1)*sizeClusters+1:samples(k)*sizeClusters) = rRex;
k = k+1;
end
end
%E-RNN
forwardInputsE = zeros(1,neuronNum);
forwardInputsI = zeros(1,neuronNum);
%Read-out
forwardInputsRE = zeros(1,RneuronNum);
forwardInputsRI = zeros(1,RneuronNum);
%Plasticity
%wRE_step = zeros(REneuronNum,EneuronNum);
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Uniform sampler %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%external input
while true
idx = i*dt > nextx;
if sum(idx) == 0
break
end
idx = find(idx);
nextx(idx) = nextx(idx) + exprnd(1,1,size(idx,2))./rx(idx);
forwardInputsEPrev(idx) = forwardInputsEPrev(idx) + Jex(idx);
end
%connectivity
xerise = xerise -dt*xerise/tauerise + forwardInputsEPrev;
xedecay = xedecay -dt*xedecay/tauedecay + forwardInputsEPrev;
xirise = xirise -dt*xirise/tauirise + forwardInputsIPrev;
xidecay = xidecay -dt*xidecay/tauidecay + forwardInputsIPrev;
gE = (xedecay - xerise)/(tauedecay - tauerise);
gI = (xidecay - xirise)/(tauidecay - tauirise);
%adaptation and plasticity excitatory
x_E = zeros(1,EneuronNum);%x_E + (dt/tau_xE)*(-x_E);
w = w + (dt/tau_w)*(a*(memVol(1:EneuronNum) - V_E) - w); %adaptation current
EVthreshold = EVthreshold + (dt/tau_T)*(V_T - EVthreshold); %adapting threshold
%cell dynamics excitatory
v(1:EneuronNum) = memVol(1:EneuronNum) + (dt/tau_E)*(-memVol(1:EneuronNum) + V_E + DET*exp((memVol(1:EneuronNum)-EVthreshold)/DET)) ...
+ (dt/C)*(gE(1:EneuronNum).*(E_E - memVol(1:EneuronNum)) + gI(1:EneuronNum).*(E_I - memVol(1:EneuronNum)) - w);
%cell dynamics inhibitory
v(EneuronNum+1:neuronNum) = memVol(EneuronNum+1:neuronNum) + (dt/tau_I)*(-memVol(EneuronNum+1:neuronNum) + V_I) + ...
(dt/C)*(gE(EneuronNum+1:neuronNum).*(E_E - memVol(EneuronNum+1:neuronNum)) + gI(EneuronNum+1:neuronNum).*(E_I - memVol(EneuronNum+1:neuronNum)));
%refractory period
v(lastAP>=i-tau_abs/dt) = Vreset;
x_E(lastAP(1:EneuronNum)>=i-15/dt) = 1;
%spike recorded excitatory
idx = v(1:EneuronNum)>Vthres;
v(idx) = Vreset;
lastAP(idx) = i;
rast(idx,i) = find(idx);
rast_binary(idx,i) = 1;
forwardInputsE = forwardInputsE + [sum(weightsEE(:,idx),2);sum(weightsIE(:,idx),2)]'; %recurrent
forwardInputsRE(1:REneuronNum) = forwardInputsRE(1:REneuronNum) + sum(wRE(:,idx),2)'; %to read-out
EVthreshold(idx) = EVthreshold(idx) + A_T;
w(idx) = w(idx) + b;
x_E(idx) = 1;
%spike recorded inhibitory
idx = find(v(EneuronNum+1:neuronNum)>V_T)+EneuronNum;
v(idx) = Vreset;
lastAP(idx) = i;
rast(idx,i) = idx;
rast_binary(idx,i) = 1;
forwardInputsI = forwardInputsI + [sum(weightsEI(:,idx-EneuronNum),2);sum(weightsII(:,idx-EneuronNum),2)]';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% READ-OUT NETWORK %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%external input
while true
idx = i*dt > nextRx;
if sum(idx) == 0
break
end
idx = find(idx);
nextRx(idx) = nextRx(idx) + exprnd(1,1,size(idx,2))./rRx(idx);
forwardInputsREPrev(idx) = forwardInputsREPrev(idx) + Jex(idx);
end
%connectivity
xRerise = xRerise -dt*xRerise/tauerise + forwardInputsREPrev;
xRedecay = xRedecay -dt*xRedecay/tauedecay + forwardInputsREPrev;
xRirise = xRirise -dt*xRirise/tauirise + forwardInputsRIPrev;
xRidecay = xRidecay -dt*xRidecay/tauidecay + forwardInputsRIPrev;
gRE = (xRedecay - xRerise)/(tauedecay - tauerise);
gRI = (xRidecay - xRirise)/(tauidecay - tauirise);
y_E = zeros(1,REneuronNum);%y_E - (dt/tau_yE)*y_E; %plasticity variable
wR = wR + (dt/tau_w)*(a_R*(memVol_R(1:REneuronNum) - V_E) - wR); %adaptation current
EVthresholdR = EVthresholdR + (dt/tau_T)*(V_T - EVthresholdR); %adapting threshold
%cell dynamics excitatory
v_R(1:REneuronNum) = memVol_R(1:REneuronNum) + (dt/tau_E)*(-memVol_R(1:REneuronNum) + V_E + DET*exp((memVol_R(1:REneuronNum)-EVthresholdR)/DET)) ...
+ (dt/C)*(gRE(1:REneuronNum).*(E_E - memVol_R(1:REneuronNum)) + gRI(1:REneuronNum).*(E_I - memVol_R(1:REneuronNum)) - wR);
%cell dynamics inhibitory
v_R(REneuronNum+1:RneuronNum) = memVol_R(REneuronNum+1:RneuronNum) + (dt/tau_I)*(-memVol_R(REneuronNum+1:RneuronNum) + V_I) + ...
(dt/C)*(gRE(REneuronNum+1:RneuronNum).*(E_E - memVol_R(REneuronNum+1:RneuronNum)) + gRI(REneuronNum+1:RneuronNum).*(E_I - memVol_R(REneuronNum+1:RneuronNum)));
%refractory period
v_R(lastAP_R>=i-tau_abs/dt) = Vreset;
y_E(lastAP_R(1:REneuronNum)>=i-15/dt) = 1;
%spike recorded excitatory
idx = v_R(1:REneuronNum)>Vthres;
v_R(idx) = Vreset;
lastAP_R(idx) = i;
rast_R(idx,i) = find(idx);
rast_binary_R(idx,i) = 1;
forwardInputsRE = forwardInputsRE + [sum(weightsREE(:,idx),2);sum(weightsRIE(:,idx),2)]'; %recurrent
EVthresholdR(idx) = EVthresholdR(idx) + A_T;
wR(idx) = wR(idx) + b_R;
y_E(idx) = 1;
%spike recorded inhibitory
idx = find(v_R(REneuronNum+1:RneuronNum)>V_T)+REneuronNum;
v_R(idx) = Vreset;
lastAP_R(idx) = i;
rast_R(idx,i) = idx;
forwardInputsRI = forwardInputsRI + [sum(weightsREI(:,idx-REneuronNum),2);sum(weightsRII(:,idx-REneuronNum),2)]'; %recurrent
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% PLASTICITY E-RNN -> Read-outs %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if i>100/dt %start-up time
wRE = wRE + 0.5*dt*(y_E'*x_E);
wRE = wRE + (dt/100)*(-sum(wRE,1) + 500); %maybe it has to be faster, I tried tau=100ms
idx = find(wRE<w_Emin); %minimum weight is w_Emin
wRE(idx) = w_Emin;
idx = find(wRE>w_Emax); %maximum weight is w_Emax
wRE(idx) = w_Emax;
end
%E-RNN
memVol = v;
forwardInputsEPrev = forwardInputsE;
forwardInputsIPrev = forwardInputsI;
%Read-out
memVol_R = v_R;
forwardInputsREPrev = forwardInputsRE;
forwardInputsRIPrev = forwardInputsRI;
%plasticity
%wRE = wRE_step;
x(:,i) = x_E';
y(:,i) = y_E';
end
if mod(its,5) == 0
figure()
subplot(3,1,1)
plotUNIFORMRASTER
subplot(3,1,2)
plotReadOutRASTER
subplot(3,1,3)
imagesc(wRE)
colorbar
end
[weights_error(its),weights_kldiv(its)] = compute_error(wRE,target_distr);
%save weights every iteration
save(['data/wRE10_50_100_small_v4_' num2str(its) '.mat'],'wRE');
end
%save target distribution and learning
save('data/weights_error10_50_100_small_v4.mat','weights_error');
save('data/weights_kldiv10_50_100_small_v4.mat','weights_kldiv');
save('data/samples10_50_100_small_v4.mat','samples_all');
figure
plot(weights_error)