-
Notifications
You must be signed in to change notification settings - Fork 2
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2019)
ModelDBRepository/256311
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# README file for Shuman et al, 2020 Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nature Neuroscience # UPDATED: MArch 20, 2021: all scripts are running under python 3. # for more information, refer to the comments inside the scripts or contact me in: chavlis [DOT] spiros [AT] gmail [DOT] com # Scripts' author: S. Chavlis, PhD, I. Pandi, M.Sc. #################### INPUT CREATION ################################################################################# # First you have to create the Inputs, go in make_inputs_linear_track directory cd make_inputs_linear_track # In a command line execute python make_grid_like_inputs.py <run_number> python sp_make_place_inputs.py <run_number> python glim_shuf_new_noisy.py <run_number> <desynch_level> <jitter_source> # <run_number> is a specific run from one edge of the track to the other. To replicate the figures one needs 10 runs # <desynch_level>: ms of desynchronization # <jitter_source>: which input to randomize. Valid options: EC or CA3. Use EC to replicate the paper figures. # e.g., python glim_v2_prelearning.py 1 20 EC # Then enter background_noise directory cd ../background_noise # create the background noise by executing python poisson_input.py <total_number_of_runs> <poisson_rate> # e.g., python poisson_input.py 1 5 --> creates run1 poisson random noise with lambda 5 Hz #################### MAIN SIMULATIONS ####################################################################### # return to main directory cd ../ # Compile all mechanisms (mod files) nrnivmodl mechanisms/ # Run the simulation ./x86_64/special -nogui -nopython -c n_runs=<run_number> -c n_trials=<virtual_mouse_id> -c desynch=<desynch_level_in_ms> -c n_neuron=<deletion_type> -c factor=<reduction_factor> Network_CA1.hoc # e.g., ./x86_64/special -nogui -nopython -c nruns=1 -c ntrials=1 -c n_neuron=0 -c desynch=0 -c factor=1 Network_CA1.hoc # to replicate the results of the paper you need 10 runs/trial and 10 trials and all possible deletions (see below) # Valid deletions: # Control: All connections and cells, default -- option: 0 # SOMred: SOMs are removed by a specific percentage -- option: 1 # PVred: PVs are removed by a specific percentage -- option: 2 # Desynch: Desynchronization of EC/CA3 inputs by a specific amount -- option: 3 # ALL: SOMred, PVred and Desynch simultaneously -- option: 4 # SOMdel: All PVs are removed -- option: 5 # PVdel: All PVs are removed -- option: 6 ** Notice: it is highly recommended to run all inputs first, and then run the simulations. # Output of the simulation is saved into Simulation_Results/ #################### ANALYSIS OF LOCOMOTION DATA BEFORE PROCEEDING ##################################################### # First, one needs to extract the spiketimes for neurons in order to analyze them # Go to AnalysisRawData directory cd AnalysisRawData # Exctract spike times python spiketimes_analysis.py <neuron_type> <deletion_type> <number_of_trial> <number_of_run> # Valid deletions_types: # Control # SOMred # PVred # Desynch # ALL # SOMdel # PVdel # Valid <neuron_type> values: # _pvsoma_ : Pyramidal cells # _aacell_ : Axoaxonic cells # _bcell_ : Basket cells # _bscell_ : Bistratified cells # _olmcell_ : OLM cells # _vipcck_ : VIP/CCK cells # _vipcr_ : VIP/CR PVM cells # _vipcrnvm_ : VIP/CR NVM cells # After the analysis for all trials, runs and deletions execute: python all_path_all_spiketimes.py <deletion_type> # e.g., python all_path_all_spiketimes.py Control # This will create the subfolder final_results/metrics_permutations # where the spiketimes and the path for all cases is stored (for better handling) # Permutations for all cells to find spatial information and stability null distributions python permutations_analysis_peyman.py <virtual_mouse> <pyramidalID> <deletion_type> # Data save for using in GraphPad Prism and basic plotting python analysis_path.py <virtual_mouse> <deletion_type> python all_trials_paper_all.py python all_trials_per_animal.py # for more information, refer to the comments inside the scripts or contact me in: chavlis [DOT] spiros [AT] gmail [DOT] com
About
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2019)