-
Notifications
You must be signed in to change notification settings - Fork 1
/
Chaos_12.ode
67 lines (53 loc) · 1.46 KB
/
Chaos_12.ode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Lactotroph.ode
# This XPPAUT file contains the program for the activity of a
# pituitary lactotroph as described in the paper "The Relationship Between Two
# Fast/Slow Analysis Techniques for Bursting Oscillations", W. Teka, J. Tabak,
# R. Bertram, Chaos, 22:043117, 2012.
# Variables:
# v -- membrane potential
# n -- delayed rectifier K current activation
# c -- calcium concentration
v(0)=-60
n(0)=0.1
c(0)=0.1
par auto=0, cpar=0.8
par vn=-5, kc=0.16, ff=0.01,
par vca=50, vk=-75, gk=4, Cm=10, gf=0.4
par gcal=2, gsk=1.7
par vm=-20, vf=-20
par sn=10, sm=12, sf=5.6
par taun=43, ks=0.5, alpha=0.0015
# use auto=0 for simulation
# use auto=1 to make bifurcation diagram with Ca as parameter (cpar)
%cd=(1-auto)*c+auto*cpar
phik=1/(1+exp((vn-v)/sn))
phif=1/(1+exp((vf-v)/sf))
phical=1/(1+exp((vm-v)/sm))
cinf=c^2/(c^2+ks^2)
ica=gcal*phical*(v-vca)
isk=gsk*cinf*(v-vk)
ibk=gf*phif*(v-vk)
ikdr=gk*n*(v-vk)
ik = isk + ibk + ikdr
v'= -(ica+ik)/Cm
n'= (phik-n)/taun
c'= -ff*(alpha*ica+kc*c)*(1-auto)+auto*(cpar-c)
%aux aical=ica
%aux aidr=ikdr
%aux aisk=isk
%aux aibk=ibk
%aux iktot=ik
%aux ca=cd
aux sinf=cinf
aux gf=gf
aux gk=gk
aux tsec = t/1000
%aux itot=ik+ica
%@ dt=10, total=200000, maxstor=200000
%@ bounds=10000000, xp=tsec, yp=v, bell=0
%@ xlo=0, xhi=60000, ylo=-80, yhi=25
@ dt=0.1, total=60000, maxstor=200000
@ bounds=1000000000, xp=t, yp=v
@ xlo=0, xhi=3000, ylo=-85, yhi=10, bell=0
@ Ntst=70, Nmax=1000, Npr=1500, parmin=-1, parmax=200,Dsmax=0.2
done