-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKCa3_ChannelML_new.mod
285 lines (175 loc) · 9.89 KB
/
KCa3_ChannelML_new.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
COMMENT
**************************************************
File generated by: neuroConstruct v1.3.8
**************************************************
This file holds the implementation in NEURON of the Cell Mechanism:
KCa3_ChannelML_new (Type: Channel mechanism, Model: ChannelML based process)
with parameters:
/channelml/@units = Physiological Units
/channelml/notes = A channel from Bhalla, U.S.and Bower, J.M. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells ...
/channelml/channel_type/@name = KCa3_ChannelML_new
/channelml/channel_type/@density = yes
/channelml/channel_type/status/@value = in_progress
/channelml/channel_type/status/issue = This ChannelML file is intended to replicate the GENESIS functionality of a tabchannel version of Kca_mit_usb
/channelml/channel_type/status/contributor/name = Simon O'Connor
/channelml/channel_type/notes = Calcium dependent K channel
/channelml/channel_type/publication/fullTitle = Bhalla, U.S.and Bower, J.M. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfacto ...
/channelml/channel_type/publication/pubmedRef = http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7688798&dopt=Abstract
/channelml/channel_type/neuronDBref/modelName = K channels
/channelml/channel_type/neuronDBref/uri = http://senselab.med.yale.edu/senselab/NeuronDB/channelGene2.htm#table3
/channelml/channel_type/current_voltage_relation/@cond_law = ohmic
/channelml/channel_type/current_voltage_relation/@ion = k
/channelml/channel_type/current_voltage_relation/@default_gmax = 3.6
/channelml/channel_type/current_voltage_relation/@default_erev = -80
/channelml/channel_type/current_voltage_relation/conc_dependence/@name = Calcium
/channelml/channel_type/current_voltage_relation/conc_dependence/@ion = ca
/channelml/channel_type/current_voltage_relation/conc_dependence/@charge = 2
/channelml/channel_type/current_voltage_relation/conc_dependence/@variable_name = ca_conc
/channelml/channel_type/current_voltage_relation/conc_dependence/@min_conc = 0
/channelml/channel_type/current_voltage_relation/conc_dependence/@max_conc = 1e-8
/channelml/channel_type/current_voltage_relation/gate[1]/@name = m
/channelml/channel_type/current_voltage_relation/gate[1]/@instances = 1
/channelml/channel_type/current_voltage_relation/gate[1]/closed_state/@id = m0
/channelml/channel_type/current_voltage_relation/gate[1]/open_state/@id = m
/channelml/channel_type/current_voltage_relation/gate[1]/open_state/@fraction = 1
/channelml/channel_type/current_voltage_relation/gate[1]/transition[1]/@name = alpha
/channelml/channel_type/current_voltage_relation/gate[1]/transition[1]/@from = m0
/channelml/channel_type/current_voltage_relation/gate[1]/transition[1]/@to = m
/channelml/channel_type/current_voltage_relation/gate[1]/transition[1]/@expr_form = generic
/channelml/channel_type/current_voltage_relation/gate[1]/transition[1]/@expr = (exp ((v-65)/27))
/channelml/channel_type/current_voltage_relation/gate[1]/transition[2]/@name = beta
/channelml/channel_type/current_voltage_relation/gate[1]/transition[2]/@from = m
/channelml/channel_type/current_voltage_relation/gate[1]/transition[2]/@to = m0
/channelml/channel_type/current_voltage_relation/gate[1]/transition[2]/@expr_form = generic
/channelml/channel_type/current_voltage_relation/gate[1]/transition[2]/@expr = 0.008
/channelml/channel_type/current_voltage_relation/gate[2]/@name = z
/channelml/channel_type/current_voltage_relation/gate[2]/@instances = 1
/channelml/channel_type/current_voltage_relation/gate[2]/closed_state/@id = z0
/channelml/channel_type/current_voltage_relation/gate[2]/open_state/@id = z
/channelml/channel_type/current_voltage_relation/gate[2]/open_state/@fraction = 1
/channelml/channel_type/current_voltage_relation/gate[2]/transition[1]/@name = alpha
/channelml/channel_type/current_voltage_relation/gate[2]/transition[1]/@from = z0
/channelml/channel_type/current_voltage_relation/gate[2]/transition[1]/@to = z
/channelml/channel_type/current_voltage_relation/gate[2]/transition[1]/@expr_form = generic
/channelml/channel_type/current_voltage_relation/gate[2]/transition[1]/@expr = (500.0*(0.015 - (ca_conc*1e6)))/( (exp ((0.015 - (ca_conc*1e6))/0.0013)) -1)
/channelml/channel_type/current_voltage_relation/gate[2]/transition[2]/@name = beta
/channelml/channel_type/current_voltage_relation/gate[2]/transition[2]/@from = z
/channelml/channel_type/current_voltage_relation/gate[2]/transition[2]/@to = z0
/channelml/channel_type/current_voltage_relation/gate[2]/transition[2]/@expr_form = generic
/channelml/channel_type/current_voltage_relation/gate[2]/transition[2]/@expr = 0.0021
/channelml/channel_type/impl_prefs/table_settings/@max_v = 50
/channelml/channel_type/impl_prefs/table_settings/@min_v = -100
/channelml/channel_type/impl_prefs/table_settings/@table_divisions = 300
// File from which this was generated: /home/Simon/nC_projects/Rat_Mitral_Cell_Gap_Network_copy4/cellMechanisms/KCa3_ChannelML_new/KCa_Chan.xml
// XSL file with mapping to simulator: /home/Simon/nC_projects/Rat_Mitral_Cell_Gap_Network_copy4/cellMechanisms/KCa3_ChannelML_new/ChannelML_v1.8.0_NEURONmod.xsl
ENDCOMMENT
? This is a NEURON mod file generated from a ChannelML file
? Unit system of original ChannelML file: Physiological Units
COMMENT
A channel from Bhalla, U.S.and Bower, J.M. Exploring parameter space in detailed single neuron models:
simulations of the mitral and granule cells of the olfactory bulb
ENDCOMMENT
TITLE Channel: KCa3_ChannelML_new
COMMENT
Calcium dependent K channel
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(um) = (micrometer)
(molar) = (1/liter)
(mM) = (millimolar)
(l) = (liter)
}
NEURON {
SUFFIX KCa3_ChannelML_new
USEION k READ ek WRITE ik VALENCE 1 ? reversal potential of ion is read, outgoing current is written
USEION ca READ cai VALENCE 2 ? internal concentration of ion is read
RANGE gmax, gion
RANGE minf, mtau
RANGE zinf, ztau
}
PARAMETER {
gmax = 0.0036 (S/cm2) ? default value, should be overwritten when conductance placed on cell
}
ASSIGNED {
v (mV)
celsius (degC)
? Reversal potential of k
ek (mV)
? The outward flow of ion: k calculated by rate equations...
ik (mA/cm2)
? The internal concentration of ion: ca is used in the rate equations...
cai (mM)
gion (S/cm2)
minf
mtau (ms)
zinf
ztau (ms)
}
BREAKPOINT { SOLVE states METHOD derivimplicit
gion = gmax*((1*m)^1)*((1*z)^1)
ik = gion*(v - ek)
}
INITIAL {
ek = -80
settables(v,cai)
m = minf
z = zinf
}
STATE {
m
z
}
DERIVATIVE states {
settables(v,cai)
m' = (minf - m)/mtau
z' = (zinf - z)/ztau
}
PROCEDURE settables(v(mV), cai(mM)) {
? Note: not all of these may be used, depending on the form of rate equations
LOCAL alpha, beta, tau, inf, gamma, zeta, ca_conc, temp_adj_m, A_alpha_m, B_alpha_m, Vhalf_alpha_m, A_beta_m, B_beta_m, Vhalf_beta_m, temp_adj_z, A_alpha_z, B_alpha_z, Vhalf_alpha_z, A_beta_z, B_beta_z, Vhalf_beta_z
UNITSOFF
temp_adj_m = 1
temp_adj_z = 1
? Gate depends on the concentration of ca
ca_conc = cai ? In NEURON, the variable for the concentration of ca is cai
? *** Adding rate equations for gate: m ***
? Found a generic form of the rate equation for alpha, using expression: (exp ((v-65)/27))
? Equations can depend on concentration. NEURON uses 'SI Units' internally for concentration,
? but the ChannelML file is in Physiological Units...
ca_conc = ca_conc / 1000000
alpha = (exp ((v-65)/27))
? Resetting concentration...
ca_conc = ca_conc * 1000000
? Found a generic form of the rate equation for beta, using expression: 0.008
? Equations can depend on concentration. NEURON uses 'SI Units' internally for concentration,
? but the ChannelML file is in Physiological Units...
ca_conc = ca_conc / 1000000
beta = 0.008
? Resetting concentration...
ca_conc = ca_conc * 1000000
mtau = 1/(temp_adj_m*(alpha + beta))
minf = alpha/(alpha + beta)
? *** Finished rate equations for gate: m ***
? *** Adding rate equations for gate: z ***
? Found a generic form of the rate equation for alpha, using expression: (500.0*(0.015 - (ca_conc*1e6)))/( (exp ((0.015 - (ca_conc*1e6))/0.0013)) -1)
? Equations can depend on concentration. NEURON uses 'SI Units' internally for concentration,
? but the ChannelML file is in Physiological Units...
ca_conc = ca_conc / 1000000
alpha = (500.0*(0.015 - (ca_conc*1e6)))/( (exp ((0.015 - (ca_conc*1e6))/0.0013)) -1)
? Resetting concentration...
ca_conc = ca_conc * 1000000
? Found a generic form of the rate equation for beta, using expression: 0.0021
? Equations can depend on concentration. NEURON uses 'SI Units' internally for concentration,
? but the ChannelML file is in Physiological Units...
ca_conc = ca_conc / 1000000
beta = 0.0021
? Resetting concentration...
ca_conc = ca_conc * 1000000
ztau = 1/(temp_adj_z*(alpha + beta))
zinf = alpha/(alpha + beta)
? *** Finished rate equations for gate: z ***
}
UNITSON