-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKA_ChannelML.mod
319 lines (206 loc) · 13 KB
/
KA_ChannelML.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
COMMENT
**************************************************
File generated by: neuroConstruct v1.3.8
**************************************************
This file holds the implementation in NEURON of the Cell Mechanism:
KA_ChannelML (Type: Channel mechanism, Model: ChannelML based process)
with parameters:
/channelml/@units = Physiological Units
/channelml/notes = K-A current for Mitral Cells from Wang et al (1996) M.Migliore Jan. 2002 Note, the values used here are based on the Neuron Mod scripts accompanyi ...
/channelml/ion/@name = k
/channelml/ion/@charge = 1
/channelml/ion/@default_erev = -90
/channelml/channel_type/@name = KA_ChannelML
/channelml/channel_type/@density = yes
/channelml/channel_type/notes = A-type K channel, with rate equations expressed in tau and inf form
/channelml/channel_type/authorList/modelTranslator/name = Simon O'Connor
/channelml/channel_type/authorList/modelTranslator/institution = University of Cardiff
/channelml/channel_type/authorList/modelTranslator/email = simon.oconnor@btinternet.com
/channelml/channel_type/publication/fullTitle = Migliore, M., Hines, M.L., Shepherd, G.M. The Role of Distal Dendritic Gap Junctions in Synchronization of Mitral Cell Axonal Output J.Comput. Neurosc ...
/channelml/channel_type/publication/pubmedRef = http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15714267
/channelml/channel_type/neuronDBref/modelName = K channels
/channelml/channel_type/neuronDBref/uri = http://senselab.med.yale.edu/senselab/NeuronDB/channelGene2.htm#table3
/channelml/channel_type/current_voltage_relation/ohmic/@ion = k
/channelml/channel_type/current_voltage_relation/ohmic/conductance/@default_gmax = 2
/channelml/channel_type/current_voltage_relation/ohmic/conductance/rate_adjustments/q10_settings/@q10_factor = 3
/channelml/channel_type/current_voltage_relation/ohmic/conductance/rate_adjustments/q10_settings/@experimental_temp = 24
/channelml/channel_type/current_voltage_relation/ohmic/conductance/rate_adjustments/offset/@value = 0
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/@power = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/state/@name = m
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/state/@fraction = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/@power = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/state/@name = h
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/state/@fraction = 1
/channelml/channel_type/hh_gate[1]/@state = m
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/@type = exponential
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/@expr = A*exp(k*(v-d))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@value = 0.1
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@value = -45
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/@type = exponential
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/@expr = A*exp(k*(v-d))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@value = 0.075
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@value = -45
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/tau/generic_equation_hh/@expr = beta / (0.04 *(1+alpha))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[2]/@value = -(0.071428571)
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[3]/@value = 17.5
/channelml/channel_type/hh_gate[2]/@state = h
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/@type = exponential
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/@expr = A*exp(k*(v-d))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@value = 0.2
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@value = -70
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/@type = exponential
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/@expr = A*exp(k*(v-d))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@value = 0.198
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@value = -70
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/tau/generic_equation_hh/@expr = beta / (0.018 *(1+alpha))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[2]/@value = (0.166666666)
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[3]/@value = -41.7
// File from which this was generated: /home/Simon/nC_projects/Rat_Mitral_Cell_Gap_Network_copy4/cellMechanisms/KA_ChannelML/KA_Chan.xml
// XSL file with mapping to simulator: /home/Simon/nC_projects/Rat_Mitral_Cell_Gap_Network_copy4/cellMechanisms/KA_ChannelML/ChannelML_v1.8.0_NEURONmod.xsl
ENDCOMMENT
? This is a NEURON mod file generated from a ChannelML file
? Unit system of original ChannelML file: Physiological Units
COMMENT
K-A current for Mitral Cells from Wang et al (1996) M.Migliore Jan. 2002
Note, the values used here are based on the Neuron Mod scripts accompanying Migliore et al (2005)
ENDCOMMENT
TITLE Channel: KA_ChannelML
COMMENT
A-type K channel, with rate equations expressed in tau and inf form
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(um) = (micrometer)
(molar) = (1/liter)
(mM) = (millimolar)
(l) = (liter)
}
NEURON {
SUFFIX KA_ChannelML
USEION k READ ek WRITE ik VALENCE 1 ? reversal potential of ion is read, outgoing current is written
RANGE gmax, gion
RANGE minf, mtau
RANGE hinf, htau
}
PARAMETER {
gmax = 0.0020 (S/cm2) ? default value, should be overwritten when conductance placed on cell
}
ASSIGNED {
v (mV)
celsius (degC)
? Reversal potential of k
ek (mV)
? The outward flow of ion: k calculated by rate equations...
ik (mA/cm2)
gion (S/cm2)
minf
mtau (ms)
hinf
htau (ms)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gion = gmax*((1*m)^1)*((1*h)^1)
ik = gion*(v - ek)
}
INITIAL {
ek = -90
rates(v)
m = minf
h = hinf
}
STATE {
m
h
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/mtau
h' = (hinf - h)/htau
}
PROCEDURE rates(v(mV)) {
? Note: not all of these may be used, depending on the form of rate equations
LOCAL alpha, beta, tau, inf, gamma, zeta, temp_adj_m, A_alpha_m, k_alpha_m, d_alpha_m, A_beta_m, k_beta_m, d_beta_m, A_tau_m, k_tau_m, d_tau_m, A_inf_m, k_inf_m, d_inf_m, temp_adj_h, A_alpha_h, k_alpha_h, d_alpha_h, A_beta_h, k_beta_h, d_beta_h, A_tau_h, k_tau_h, d_tau_h, A_inf_h, k_inf_h, d_inf_h
TABLE minf, mtau,hinf, htau
DEPEND celsius
FROM -100 TO 100 WITH 400
UNITSOFF
? There is a Q10 factor which will alter the tau of the gates
temp_adj_m = 3^((celsius - 24)/10)
temp_adj_h = 3^((celsius - 24)/10)
? There is a voltage offset of 0. This will shift the dependency of the rate equations
v = v - (0)
? *** Adding rate equations for gate: m ***
? Found a parameterised form of rate equation for alpha, using expression: A*exp(k*(v-d))
A_alpha_m = 1
k_alpha_m = 0.1
d_alpha_m = -45
alpha = A_alpha_m * exp((v - d_alpha_m) * k_alpha_m)
? Found a parameterised form of rate equation for beta, using expression: A*exp(k*(v-d))
A_beta_m = 1
k_beta_m = 0.075
d_beta_m = -45
beta = A_beta_m * exp((v - d_beta_m) * k_beta_m)
? Found a generic form of the rate equation for tau, using expression: beta / (0.04 *(1+alpha))
tau = beta / (0.04 *(1+alpha))
mtau = tau/temp_adj_m
? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp(k*(v-d)))
A_inf_m = 1
k_inf_m = -(0.071428571)
d_inf_m = 17.5
inf = A_inf_m / (exp((v - d_inf_m) * k_inf_m) + 1)
minf = inf
? *** Finished rate equations for gate: m ***
? *** Adding rate equations for gate: h ***
? Found a parameterised form of rate equation for alpha, using expression: A*exp(k*(v-d))
A_alpha_h = 1
k_alpha_h = 0.2
d_alpha_h = -70
alpha = A_alpha_h * exp((v - d_alpha_h) * k_alpha_h)
? Found a parameterised form of rate equation for beta, using expression: A*exp(k*(v-d))
A_beta_h = 1
k_beta_h = 0.198
d_beta_h = -70
beta = A_beta_h * exp((v - d_beta_h) * k_beta_h)
? Found a generic form of the rate equation for tau, using expression: beta / (0.018 *(1+alpha))
tau = beta / (0.018 *(1+alpha))
htau = tau/temp_adj_h
? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp(k*(v-d)))
A_inf_h = 1
k_inf_h = (0.166666666)
d_inf_h = -41.7
inf = A_inf_h / (exp((v - d_inf_h) * k_inf_h) + 1)
hinf = inf
? *** Finished rate equations for gate: h ***
}
UNITSON