-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.html
148 lines (110 loc) · 4.24 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
<html><pre>
README
StochasticHH_ObjectOriented.py
Author: Alan Leggitt
5-11-2012
This code is a re-implementation of Matlab code written by Joshua
Goldwyn. The original Matlab code can be found at
<a href="http://faculty.washington.edu/etsb/tutorials.html">http://faculty.washington.edu/etsb/tutorials.html</a>
This version runs best using Pylab from the Enthought Python
Distribution 7.2 For more information visit www.enthought.com
For more information, contact Alan Leggitt at alan.leggitt@ucsf.edu
Using the Code
--------------
To get started use the following commands in a Pylab terminal (see
<a href="http://enthought.com/products/epdgetstart.php">http://enthought.com/products/epdgetstart.php</a>):
run StochasticHH_ObjectOriented
n = Neuron()
n()
This will output two figures, one of voltage vs. time,
<img src="./screenshot1.jpg" alt="screenshot 1">
the other of Fraction of ion channels vs. time, similar to Fig 1B:
<img src="./screenshot2.jpg" alt="screenshot 2">
setting the second parameter in the time array to 30.01 (default
100.1) for a faster run and setting the model to Markov chain:
run StochasticHH_ObjectOriented
n=Neuron(timeArray=arange(0,30.01, 0.01), noiseModel="MarkovChain")
n()
we get a result similar to Fig 1A, although for expedience a current
injection is included here:
<img src="./screenshot3.jpg" alt="screenshot 3">
The Neuron class has some default values: a time array of 0 to 100 in
increments of 0.01 ms, an input current array with a 10 ms step
current, a noise standard deviation of 10, an area of 100 cm**2, and a
noise model (no noise). Any of these parameters can be changed, using
the following guidelines
Parameters
----------
timeArray - array of times
inputCurrent - an array of input current values, must be the same
length as time
noiseSTD - the standard deviation of the noise
area - the area of the neuron
noiseModel - model for the input noise, must be a string
ODE - no input noise
Current - noise added to current input
Subunit - noise added to subunit variables
VClamp - voltage clamp conductance noise, Linaro et al model
FoxLuSystemSize - system size conductance noise, Fox and Lu
model
MarkovChain - Markov Chain model
For example...
run StochasticHH_ObjectOriented
t = arange(0,100,0.01)
n = Neuron(timeArray=t,inputCurrent=sin(t),noiseSTD=5,area=50,noiseModel='Current')
n()
Will generate the same two plots using the above parameters.
Note: Any number of these parameters can be specified. Those that are
left unspecified will use the default values.
Functions
---------
The Neuron class has the following functions
solveStochasticModel - solve the Hodgkin Huxley model using the noise
model
plotVoltage - plot the voltage vs. time
plotChannelFractions - plot fractions of both ion channel types
vs. time
The Neuron class also has a call function installed, so that running
the following
run StochasticHH_ObjectOriented
n = Neuron()
n()
Will automatically call all three of the above functions. These
functions can also be called manually. For example...
run StochasticHH_ObjectOriented
n = Neuron()
n.solveStochasticModel()
n.plotVoltage()
n.plotChannelFractions()
Note: solveStochasticModel must be called before either plotting
function.
Plotting
--------
Each plotting function can also be called with an axis specified. For
example...
run StochasticHH_ObjectOriented
fig = figure()
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
n = Neuron()
n.solveStochasticModel()
n.plotVoltage(ax=ax1)
n.plotChannelFractions(ax=ax2)
Will plot each output plot on a separate subplot.
These plotting functions use default linestyles. The default for
voltage is a solid black line.
The default for fraction of Na Channels is a blue line and the default
for fraction of K Channels is a green line.
These linestyle parameters can also be changed, which allows for super
imposing different neuron plots. For example...
run StochasticHH_ObjectOriented
fig = figure()
ax = fig.add_subplot(111)
n1 = Neuron()
n2 = Neuron(noiseModel='Current')
n1.solveStochasticModel()
n2.solveStochasticModel()
n1.plotVoltage(ax=ax,lineStyle='k')
n2.plotVoltage(ax=ax,lineStyle='r')
20120515 python script updated with state variable permutation bug fix.
</pre></html>