-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
132 lines (124 loc) · 4.29 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from datasets.kinetics import Kinetics
from datasets.ucf101 import UCF101
from datasets.jester import Jester
from datasets.isogd import IsoGD
from datasets.nvgesture import NVGesture
def get_training_set(opt, spatial_transform, temporal_transform, target_transform):
assert opt.dataset in ['jester', 'isogd', 'nvgesture']
if opt.dataset == 'jester':
training_data = Jester(
opt.video_path,
opt.annotation_path,
opt.modalities,
'training',
spatial_transform=spatial_transform,
temporal_transform=temporal_transform,
target_transform=target_transform,
sample_duration=opt.sample_duration,
cnn_dim=opt.cnn_dim)
elif opt.dataset == 'isogd':
training_data = IsoGD(
opt.video_path,
opt.annotation_path,
opt.modalities,
'training',
spatial_transform=spatial_transform,
temporal_transform=temporal_transform,
target_transform=target_transform,
sample_duration=opt.sample_duration,
cnn_dim=opt.cnn_dim)
elif opt.dataset == 'nvgesture':
training_data = NVGesture(
opt.video_path,
opt.annotation_path,
opt.modalities,
'training',
spatial_transform=spatial_transform,
temporal_transform=temporal_transform,
target_transform=target_transform,
sample_duration=opt.sample_duration,
cnn_dim=opt.cnn_dim)
return training_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform):
assert opt.dataset in ['jester', 'isogd', 'nvgesture']
if opt.dataset == 'jester':
validation_data = Jester(
opt.video_path,
opt.annotation_path,
opt.modalities,
'validation',
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration,
cnn_dim=opt.cnn_dim)
elif opt.dataset == 'isogd':
validation_data = IsoGD(
opt.video_path,
opt.annotation_path,
opt.modalities,
'validation',
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration,
cnn_dim=opt.cnn_dim)
elif opt.dataset == 'nvgesture':
validation_data = NVGesture(
opt.video_path,
opt.annotation_path,
opt.modalities,
'validation',
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration,
cnn_dim=opt.cnn_dim)
return validation_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform):
assert opt.dataset in ['jester', 'isogd', 'nvgesture']
assert opt.test_subset in ['val', 'test']
if opt.test_subset == 'val':
subset = 'validation'
elif opt.test_subset == 'test':
subset = 'testing'
if opt.dataset == 'jester':
test_data = Jester(
opt.video_path,
opt.annotation_path,
opt.modalities,
subset,
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration,
cnn_dim=opt.cnn_dim)
elif opt.dataset == 'isogd':
test_data = IsoGD(
opt.video_path,
opt.annotation_path,
opt.modalities,
subset,
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration,
cnn_dim=opt.cnn_dim)
elif opt.dataset == 'nvgesture':
test_data = NVGesture(
opt.video_path,
opt.annotation_path,
opt.modalities,
subset,
opt.n_val_samples,
spatial_transform,
temporal_transform,
target_transform,
sample_duration=opt.sample_duration,
cnn_dim=opt.cnn_dim)
return test_data