-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpipeline_cogvideox.py
927 lines (806 loc) · 47.5 KB
/
pipeline_cogvideox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import math
from diffusers.models import AutoencoderKLCogVideoX#, CogVideoXTransformer3DModel
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from .custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel
from comfy.utils import ProgressBar
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
from .videosys.core.pipeline import VideoSysPipeline
from .videosys.cogvideox_transformer_3d import CogVideoXTransformer3DModel as CogVideoXTransformer3DModelPAB
from .videosys.core.pab_mgr import set_pab_manager
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
tw = tgt_width
th = tgt_height
h, w = src
r = h / w
if r > (th / tw):
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class CogVideoXPipeline(VideoSysPipeline):
r"""
Pipeline for text-to-video generation using CogVideoX.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. CogVideoX uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
tokenizer (`T5Tokenizer`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
transformer ([`CogVideoXTransformer3DModel`]):
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
"""
_optional_components = ["tokenizer", "text_encoder"]
model_cpu_offload_seq = "text_encoder->transformer->vae"
def __init__(
self,
vae: AutoencoderKLCogVideoX,
transformer: Union[CogVideoXTransformer3DModel, CogVideoXTransformer3DModelPAB],
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
original_mask = None,
pab_config = None
):
super().__init__()
self.register_modules(
vae=vae, transformer=transformer, scheduler=scheduler
)
self.vae_scale_factor_spatial = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
)
self.vae_scale_factor_temporal = (
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
)
self.original_mask = original_mask
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
if pab_config is not None:
set_pab_manager(pab_config)
self.input_with_padding = True
def prepare_latents(
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, timesteps, denoise_strength,
num_inference_steps, latents=None, freenoise=True, context_size=None, context_overlap=None
):
shape = (
batch_size,
(num_frames - 1) // self.vae_scale_factor_temporal + 1,
num_channels_latents,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
noise = randn_tensor(shape, generator=generator, device=torch.device("cpu"), dtype=self.vae.dtype)
if freenoise:
print("Applying FreeNoise")
# code and comments from AnimateDiff-Evolved by Kosinkadink (https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved)
video_length = num_frames // 4
delta = context_size - context_overlap
for start_idx in range(0, video_length-context_size, delta):
# start_idx corresponds to the beginning of a context window
# goal: place shuffled in the delta region right after the end of the context window
# if space after context window is not enough to place the noise, adjust and finish
place_idx = start_idx + context_size
# if place_idx is outside the valid indexes, we are already finished
if place_idx >= video_length:
break
end_idx = place_idx - 1
#print("video_length:", video_length, "start_idx:", start_idx, "end_idx:", end_idx, "place_idx:", place_idx, "delta:", delta)
# if there is not enough room to copy delta amount of indexes, copy limited amount and finish
if end_idx + delta >= video_length:
final_delta = video_length - place_idx
# generate list of indexes in final delta region
list_idx = torch.tensor(list(range(start_idx,start_idx+final_delta)), device=torch.device("cpu"), dtype=torch.long)
# shuffle list
list_idx = list_idx[torch.randperm(final_delta, generator=generator)]
# apply shuffled indexes
noise[:, place_idx:place_idx + final_delta, :, :, :] = noise[:, list_idx, :, :, :]
break
# otherwise, do normal behavior
# generate list of indexes in delta region
list_idx = torch.tensor(list(range(start_idx,start_idx+delta)), device=torch.device("cpu"), dtype=torch.long)
# shuffle list
list_idx = list_idx[torch.randperm(delta, generator=generator)]
# apply shuffled indexes
#print("place_idx:", place_idx, "delta:", delta, "list_idx:", list_idx)
noise[:, place_idx:place_idx + delta, :, :, :] = noise[:, list_idx, :, :, :]
if latents is None:
latents = noise.to(device)
else:
latents = latents.to(device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, denoise_strength, device)
latent_timestep = timesteps[:1]
noise = randn_tensor(shape, generator=generator, device=device, dtype=self.vae.dtype)
frames_needed = noise.shape[1]
current_frames = latents.shape[1]
if frames_needed > current_frames:
repeat_factor = frames_needed // current_frames
additional_frame = torch.randn((latents.size(0), repeat_factor, latents.size(2), latents.size(3), latents.size(4)), dtype=latents.dtype, device=latents.device)
latents = torch.cat((latents, additional_frame), dim=1)
elif frames_needed < current_frames:
latents = latents[:, :frames_needed, :, :, :]
latents = self.scheduler.add_noise(latents, noise, latent_timestep)
latents = latents * self.scheduler.init_noise_sigma # scale the initial noise by the standard deviation required by the scheduler
return latents, timesteps, noise
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
def check_inputs(
self,
height,
width,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps.to(device), num_inference_steps - t_start
def _gaussian_weights(self, t_tile_length, t_batch_size):
from numpy import pi, exp, sqrt
var = 0.01
midpoint = (t_tile_length - 1) / 2 # -1 because index goes from 0 to latent_width - 1
t_probs = [exp(-(t-midpoint)*(t-midpoint)/(t_tile_length*t_tile_length)/(2*var)) / sqrt(2*pi*var) for t in range(t_tile_length)]
weights = torch.tensor(t_probs)
weights = weights.unsqueeze(0).unsqueeze(2).unsqueeze(3).unsqueeze(4).repeat(1, t_batch_size,1, 1, 1)
return weights
def fuse_qkv_projections(self) -> None:
r"""Enables fused QKV projections."""
self.fusing_transformer = True
self.transformer.fuse_qkv_projections()
def unfuse_qkv_projections(self) -> None:
r"""Disable QKV projection fusion if enabled."""
if not self.fusing_transformer:
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
else:
self.transformer.unfuse_qkv_projections()
self.fusing_transformer = False
def _prepare_rotary_positional_embeddings(
self,
height: int,
width: int,
num_frames: int,
device: torch.device,
start_frame: int = None,
end_frame: int = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
grid_crops_coords = get_resize_crop_region_for_grid(
(grid_height, grid_width), base_size_width, base_size_height
)
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=self.transformer.config.attention_head_dim,
crops_coords=grid_crops_coords,
grid_size=(grid_height, grid_width),
temporal_size=num_frames,
use_real=True,
)
if start_frame is not None:
freqs_cos = freqs_cos.view(num_frames, grid_height * grid_width, -1)
freqs_sin = freqs_sin.view(num_frames, grid_height * grid_width, -1)
freqs_cos = freqs_cos[start_frame:end_frame]
freqs_sin = freqs_sin[start_frame:end_frame]
freqs_cos = freqs_cos.view(-1, freqs_cos.shape[-1])
freqs_sin = freqs_sin.view(-1, freqs_sin.shape[-1])
freqs_cos = freqs_cos.to(device=device)
freqs_sin = freqs_sin.to(device=device)
return freqs_cos, freqs_sin
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
def __call__(
self,
height: int = 480,
width: int = 720,
num_frames: int = 48,
t_tile_length: int = 12,
t_tile_overlap: int = 4,
num_inference_steps: int = 50,
timesteps: Optional[List[int]] = None,
guidance_scale: float = 6,
denoise_strength: float = 1.0,
num_videos_per_prompt: int = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
image_cond_latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
device = torch.device("cuda"),
context_schedule: Optional[str] = None,
context_frames: Optional[int] = None,
context_stride: Optional[int] = None,
context_overlap: Optional[int] = None,
freenoise: Optional[bool] = True,
controlnet: Optional[dict] = None,
tora: Optional[dict] = None,
):
"""
Function invoked when calling the pipeline for generation.
Args:
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_frames (`int`, defaults to `48`):
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
needs to be satisfied is that of divisibility mentioned above.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of videos to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
#assert (
# num_frames <= 48 and num_frames % fps == 0 and fps == 8
#), f"The number of frames must be divisible by {fps=} and less than 48 frames (for now). Other values are not supported in CogVideoX."
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
num_videos_per_prompt = 1
# 1. Check inputs. Raise error if not correct
self.check_inputs(
height,
width,
prompt_embeds,
negative_prompt_embeds,
)
self._guidance_scale = guidance_scale
self._interrupt = False
# 2. Default call parameters
batch_size = prompt_embeds.shape[0]
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
prompt_embeds = prompt_embeds.to(self.vae.dtype)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
self._num_timesteps = len(timesteps)
# 5. Prepare latents.
latent_channels = self.vae.config.latent_channels
if latents is None and num_frames == t_tile_length:
num_frames += 1
if self.original_mask is not None:
image_latents = latents
original_image_latents = image_latents
latents, timesteps, noise = self.prepare_latents(
batch_size * num_videos_per_prompt,
latent_channels,
num_frames,
height,
width,
self.vae.dtype,
device,
generator,
timesteps,
denoise_strength,
num_inference_steps,
latents,
context_size=context_frames,
context_overlap=context_overlap,
freenoise=freenoise,
)
latents = latents.to(self.vae.dtype)
#print("latents", latents.shape)
# 5.5.
if image_cond_latents is not None:
if image_cond_latents.shape[1] > 1:
logger.info("More than one image conditioning frame received, interpolating")
padding_shape = (
batch_size,
(latents.shape[1] - 2),
self.vae.config.latent_channels,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.vae.dtype)
image_cond_latents = torch.cat([image_cond_latents[:, 0, :, :, :].unsqueeze(1), latent_padding, image_cond_latents[:, -1, :, :, :].unsqueeze(1)], dim=1)
logger.info(f"image cond latents shape: {image_cond_latents.shape}")
else:
logger.info("Only one image conditioning frame received, img2vid")
if self.input_with_padding:
padding_shape = (
batch_size,
(latents.shape[1] - 1),
self.vae.config.latent_channels,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
latent_padding = torch.zeros(padding_shape, device=device, dtype=self.vae.dtype)
image_cond_latents = torch.cat([image_cond_latents, latent_padding], dim=1)
else:
image_cond_latents = image_cond_latents.repeat(1, latents.shape[1], 1, 1, 1)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 6.5. Create rotary embeds if required
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
# masks
if self.original_mask is not None:
mask = self.original_mask.to(device)
logger.info(f"self.original_mask: {self.original_mask.shape}")
mask = F.interpolate(self.original_mask.unsqueeze(1), size=(latents.shape[-2], latents.shape[-1]), mode='bilinear', align_corners=False)
if mask.shape[0] != latents.shape[1]:
mask = mask.unsqueeze(1).repeat(1, latents.shape[1], 16, 1, 1)
else:
mask = mask.unsqueeze(0).repeat(1, 1, 16, 1, 1)
logger.info(f"latents: {latents.shape}")
logger.info(f"mask: {mask.shape}")
# 7. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
comfy_pbar = ProgressBar(num_inference_steps)
# 8. context schedule and temporal tiling
if context_schedule is not None and context_schedule == "temporal_tiling":
t_tile_length = context_frames
t_tile_overlap = context_overlap
t_tile_weights = self._gaussian_weights(t_tile_length=t_tile_length, t_batch_size=1).to(latents.device).to(self.vae.dtype)
use_temporal_tiling = True
logger.info("Temporal tiling enabled")
elif context_schedule is not None:
if image_cond_latents is not None:
raise NotImplementedError("Context schedule not currently supported with image conditioning")
logger.info(f"Context schedule enabled: {context_frames} frames, {context_stride} stride, {context_overlap} overlap")
use_temporal_tiling = False
use_context_schedule = True
from .cogvideox_fun.context import get_context_scheduler
context = get_context_scheduler(context_schedule)
else:
use_temporal_tiling = False
use_context_schedule = False
logger.info("Temporal tiling and context schedule disabled")
# 7. Create rotary embeds if required
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
if tora is not None and do_classifier_free_guidance:
video_flow_features = tora["video_flow_features"].repeat(1, 2, 1, 1, 1).contiguous()
# 9. Controlnet
if controlnet is not None:
self.controlnet = controlnet["control_model"].to(device)
if self.transformer.dtype == torch.float8_e4m3fn:
for name, param in self.controlnet.named_parameters():
if "patch_embed" not in name and param.data.dtype != torch.float8_e4m3fn:
param.data = param.data.to(torch.float8_e4m3fn)
else:
self.controlnet.to(self.transformer.dtype)
if getattr(self.transformer, 'fp8_matmul_enabled', False):
from .fp8_optimization import convert_fp8_linear
if not hasattr(self.controlnet, 'fp8_matmul_enabled') or not self.controlnet.fp8_matmul_enabled:
convert_fp8_linear(self.controlnet, torch.float16)
setattr(self.controlnet, "fp8_matmul_enabled", True)
control_frames = controlnet["control_frames"].to(device).to(self.controlnet.dtype).contiguous()
control_frames = torch.cat([control_frames] * 2) if do_classifier_free_guidance else control_frames
control_weights = controlnet["control_weights"]
logger.info(f"Controlnet enabled with weights: {control_weights}")
control_start = controlnet["control_start"]
control_end = controlnet["control_end"]
else:
controlnet_states = None
control_weights= None
if tora is not None:
for module in self.transformer.fuser_list:
for param in module.parameters():
param.data = param.data.to(device)
# 10. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
old_pred_original_sample = None # for DPM-solver++
for i, t in enumerate(timesteps):
if self.interrupt:
continue
if use_temporal_tiling and isinstance(self.scheduler, CogVideoXDDIMScheduler):
#temporal tiling code based on https://github.com/mayuelala/FollowYourEmoji/blob/main/models/video_pipeline.py
# =====================================================
grid_ts = 0
cur_t = 0
while cur_t < latents.shape[1]:
cur_t = max(grid_ts * t_tile_length - t_tile_overlap * grid_ts, 0) + t_tile_length
grid_ts += 1
all_t = latents.shape[1]
latents_all_list = []
# =====================================================
for t_i in range(grid_ts):
if t_i < grid_ts - 1:
ofs_t = max(t_i * t_tile_length - t_tile_overlap * t_i, 0)
if t_i == grid_ts - 1:
ofs_t = all_t - t_tile_length
input_start_t = ofs_t
input_end_t = ofs_t + t_tile_length
#latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
#latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(height, width, t_tile_length, device)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
latents_tile = latents[:, input_start_t:input_end_t,:, :, :]
latent_model_input_tile = torch.cat([latents_tile] * 2) if do_classifier_free_guidance else latents_tile
latent_model_input_tile = self.scheduler.scale_model_input(latent_model_input_tile, t)
#t_input = t[None].to(device)
t_input = t.expand(latent_model_input_tile.shape[0]) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input_tile,
encoder_hidden_states=prompt_embeds,
timestep=t_input,
image_rotary_emb=image_rotary_emb,
return_dict=False,
)[0]
noise_pred = noise_pred.float()
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self._guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents_tile = self.scheduler.step(noise_pred, t, latents_tile.to(self.vae.dtype), **extra_step_kwargs, return_dict=False)[0]
latents_all_list.append(latents_tile)
# ==========================================
latents_all = torch.zeros(latents.shape, device=latents.device, dtype=self.vae.dtype)
contributors = torch.zeros(latents.shape, device=latents.device, dtype=self.vae.dtype)
# Add each tile contribution to overall latents
for t_i in range(grid_ts):
if t_i < grid_ts - 1:
ofs_t = max(t_i * t_tile_length - t_tile_overlap * t_i, 0)
if t_i == grid_ts - 1:
ofs_t = all_t - t_tile_length
input_start_t = ofs_t
input_end_t = ofs_t + t_tile_length
latents_all[:, input_start_t:input_end_t,:, :, :] += latents_all_list[t_i] * t_tile_weights
contributors[:, input_start_t:input_end_t,:, :, :] += t_tile_weights
latents_all /= contributors
latents = latents_all
#print("latents",latents.shape)
# start diff diff
if i < len(timesteps) - 1 and self.original_mask is not None:
noise_timestep = timesteps[i + 1]
image_latent = self.scheduler.add_noise(original_image_latents, noise, torch.tensor([noise_timestep])
)
mask = mask.to(latents)
ts_from = timesteps[0]
ts_to = timesteps[-1]
threshold = (t - ts_to) / (ts_from - ts_to)
mask = torch.where(mask >= threshold, mask, torch.zeros_like(mask))
latents = image_latent * mask + latents * (1 - mask)
# end diff diff
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
comfy_pbar.update(1)
# ==========================================
elif use_context_schedule:
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
counter = torch.zeros_like(latent_model_input)
noise_pred = torch.zeros_like(latent_model_input)
if image_cond_latents is not None:
latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
current_step_percentage = i / num_inference_steps
# use same rotary embeddings for all context windows
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(height, width, context_frames, device)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
context_queue = list(context(
i, num_inference_steps, latents.shape[1], context_frames, context_stride, context_overlap,
))
if controlnet is not None:
# controlnet frames are not temporally compressed, so try to match the context frames that are
control_context_queue = list(context(
i,
num_inference_steps,
control_frames.shape[1],
context_frames * self.vae_scale_factor_temporal,
context_stride * self.vae_scale_factor_temporal,
context_overlap * self.vae_scale_factor_temporal,
))
for c, control_c in zip(context_queue, control_context_queue):
partial_latent_model_input = latent_model_input[:, c, :, :, :]
partial_control_frames = control_frames[:, control_c, :, :, :]
controlnet_states = None
if (control_start <= current_step_percentage <= control_end):
# extract controlnet hidden state
controlnet_states = self.controlnet(
hidden_states=partial_latent_model_input,
encoder_hidden_states=prompt_embeds,
image_rotary_emb=image_rotary_emb,
controlnet_states=partial_control_frames,
timestep=timestep,
return_dict=False,
)[0]
if isinstance(controlnet_states, (tuple, list)):
controlnet_states = [x.to(dtype=self.controlnet.dtype) for x in controlnet_states]
else:
controlnet_states = controlnet_states.to(dtype=self.controlnet.dtype)
# predict noise model_output
noise_pred[:, c, :, :, :] += self.transformer(
hidden_states=partial_latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
image_rotary_emb=image_rotary_emb,
return_dict=False,
controlnet_states=controlnet_states,
controlnet_weights=control_weights,
)[0]
counter[:, c, :, :, :] += 1
noise_pred = noise_pred.float()
else:
for c in context_queue:
partial_latent_model_input = latent_model_input[:, c, :, :, :]
if (tora is not None and tora["start_percent"] <= current_step_percentage <= tora["end_percent"]):
if do_classifier_free_guidance:
partial_video_flow_features = tora["video_flow_features"][:, c, :, :, :].repeat(1, 2, 1, 1, 1).contiguous()
else:
partial_video_flow_features = tora["video_flow_features"][:, c, :, :, :]
else:
partial_video_flow_features = None
# predict noise model_output
noise_pred[:, c, :, :, :] += self.transformer(
hidden_states=partial_latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
image_rotary_emb=image_rotary_emb,
video_flow_features=partial_video_flow_features,
return_dict=False
)[0]
counter[:, c, :, :, :] += 1
noise_pred = noise_pred.float()
noise_pred /= counter
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self._guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
else:
latents, old_pred_original_sample = self.scheduler.step(
noise_pred,
old_pred_original_sample,
t,
timesteps[i - 1] if i > 0 else None,
latents,
**extra_step_kwargs,
return_dict=False,
)
latents = latents.to(prompt_embeds.dtype)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
comfy_pbar.update(1)
else:
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if image_cond_latents is not None:
latent_image_input = torch.cat([image_cond_latents] * 2) if do_classifier_free_guidance else image_cond_latents
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
current_step_percentage = i / num_inference_steps
if controlnet is not None:
controlnet_states = None
if (control_start <= current_step_percentage <= control_end):
# extract controlnet hidden state
controlnet_states = self.controlnet(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
image_rotary_emb=image_rotary_emb,
controlnet_states=control_frames,
timestep=timestep,
return_dict=False,
)[0]
if isinstance(controlnet_states, (tuple, list)):
controlnet_states = [x.to(dtype=self.vae.dtype) for x in controlnet_states]
else:
controlnet_states = controlnet_states.to(dtype=self.vae.dtype)
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
image_rotary_emb=image_rotary_emb,
return_dict=False,
controlnet_states=controlnet_states,
controlnet_weights=control_weights,
video_flow_features=video_flow_features if (tora is not None and tora["start_percent"] <= current_step_percentage <= tora["end_percent"]) else None,
)[0]
noise_pred = noise_pred.float()
if isinstance(self.scheduler, CogVideoXDPMScheduler):
self._guidance_scale = 1 + guidance_scale * (
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
)
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self._guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
latents = self.scheduler.step(noise_pred, t, latents.to(self.vae.dtype), **extra_step_kwargs, return_dict=False)[0]
else:
latents, old_pred_original_sample = self.scheduler.step(
noise_pred,
old_pred_original_sample,
t,
timesteps[i - 1] if i > 0 else None,
latents.to(self.vae.dtype),
**extra_step_kwargs,
return_dict=False,
)
latents = latents.to(prompt_embeds.dtype)
# start diff diff
if i < len(timesteps) - 1 and self.original_mask is not None:
noise_timestep = timesteps[i + 1]
image_latent = self.scheduler.add_noise(original_image_latents, noise, torch.tensor([noise_timestep])
)
mask = mask.to(latents)
ts_from = timesteps[0]
ts_to = timesteps[-1]
threshold = (t - ts_to) / (ts_from - ts_to)
mask = torch.where(mask >= threshold, mask, torch.zeros_like(mask))
latents = image_latent * mask + latents * (1 - mask)
# end diff diff
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
comfy_pbar.update(1)
# Offload all models
self.maybe_free_model_hooks()
return latents