-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCMC.py
570 lines (448 loc) · 23.8 KB
/
CMC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import random
import pdb
import numpy as np
import numpy
import sys
import collections
import copy
import time
from datetime import timedelta
from sklearn.cluster import DBSCAN
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import pdb
from sklearn.cluster import KMeans
from maskcl import datasets
from maskcl import models
from maskcl.models.hm import HybridMemory
from maskcl.models.embeddingmodel import Embedding_model
from maskcl.trainers import CACLTrainer_USL,CACLSIC_USL, Mask_CACLSIC_USL
from maskcl.evaluators import Evaluator, extract_features
from maskcl.utils.data import IterLoader
from maskcl.utils.data import transforms as T
from maskcl.utils.data.sampler import RandomMultipleGallerySampler
from maskcl.utils.data.preprocessor import Preprocessor
from maskcl.utils.logging import Logger
from maskcl.utils.serialization import load_checkpoint, save_checkpoint, copy_state_dict
from maskcl.utils.faiss_rerank import compute_jaccard_distance
import os
def get_data(name, data_dir):
root = osp.join(data_dir, name)
dataset = datasets.create(name, root)
return dataset
def get_train_loader(args, dataset, height, width, batch_size, workers,
num_instances, iters, trainset=None):
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transformer = T.Compose([
T.Resize((height, width), interpolation=3),
T.RandomHorizontalFlip(p=0.5),
T.Pad(10),
T.RandomCrop((height, width)),
T.ToTensor(),
normalizer,
T.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406])
])
train_transformer2 = T.Compose([
T.Resize((height, width), interpolation=3),
T.Grayscale(num_output_channels=3),
T.RandomHorizontalFlip(p=0.5),
T.Pad(10),
T.RandomCrop((height, width)),
T.ToTensor(),
normalizer,
T.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406]),
])
train_set = sorted(dataset.train) if trainset is None else sorted(trainset)
rmgs_flag = num_instances > 0
if rmgs_flag:
sampler = RandomMultipleGallerySampler(train_set, num_instances)
else:
sampler = None
train_loader = IterLoader(
DataLoader(Preprocessor(train_set, root=dataset.images_dir, transform1=train_transformer,transform2 = train_transformer2),
batch_size=batch_size, num_workers=workers, sampler=sampler,
shuffle=not rmgs_flag, pin_memory=True, drop_last=True), length=iters)
return train_loader
def get_test_loader(dataset, height, width, batch_size, workers, testset=None):
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
test_transformer = T.Compose([
T.Resize((height, width), interpolation=3),
T.ToTensor(),
normalizer
])
train = True
if (testset is None):
testset = list(set(dataset.query) | set(dataset.gallery))
train = False
test_loader = DataLoader(
Preprocessor(testset, train, root=dataset.images_dir, transform1=test_transformer,transform2 = test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True)
return test_loader
def create_model(args):
model = models.create(args.arch, num_features=args.features, norm=True, dropout=args.dropout, num_classes=0)
model.cuda()
model = nn.DataParallel(model)
return model
def evaluate_mean(evaluator1, dataset, test_loaders):
maxap = 0
maxcmc = 0
mAP_sum = 0
cmc_sum = 0
cmc_sum_10 = 0
for i in range(len(dataset)):
cmc_scores, mAP = evaluator1.evaluate(test_loaders[i], dataset[i].query, dataset[i].gallery, cmc_flag=False)
maxap = max(mAP, maxap)
maxcmc = max(cmc_scores[0], maxcmc)
mAP_sum += mAP
cmc_sum += cmc_scores[0]
cmc_sum_10 += cmc_scores[9]
mAP = (mAP_sum) / len(test_loaders)
cmc_now = (cmc_sum) / len(test_loaders)
cmc_now_10 = cmc_sum_10 / (len(test_loaders))
return mAP, cmc_now, cmc_now_10
def cluster_finement_new(index2label, pseudo_labels, rerank_dist, pseudo_labels_tight):
source_before = (index2label == 1).sum()
num_label = len(pseudo_labels)
rerank_dist_tensor = torch.tensor(rerank_dist)
N = pseudo_labels.size(0)
label_sim_expand = pseudo_labels.expand(N, N)
label_sim_tight_expand = pseudo_labels_tight.expand(N, N)
label_sim = label_sim_expand.eq(label_sim_expand.t()).float()
label_sim_tight = label_sim_tight_expand.eq(label_sim_tight_expand.t()).float()
sim_distance = rerank_dist_tensor.clone() * label_sim
dists_labels = label_sim.sum(-1)
dists_label_add = dists_labels.clone()
dists_label_add[dists_label_add > 1] -= 1
sim_add_average = sim_distance.sum(-1) / torch.pow(dists_labels, 2)
cluster_I_average = torch.zeros(torch.max(pseudo_labels).item() + 1)
for sim_dists, label in zip(sim_add_average, pseudo_labels):
cluster_I_average[label.item()] += sim_dists
sim_tight = label_sim.eq(1 - label_sim_tight.clone()).float()
dists_tight = sim_tight * rerank_dist_tensor.clone()
dists_label_tight_add = (1 + sim_tight.sum(-1))
dists_label_tight_add[dists_label_tight_add > 1] -= 1
sim_add_average = dists_tight.sum(-1) / torch.pow(dists_label_tight_add, 2)
cluster_tight_average = torch.zeros(torch.max(pseudo_labels_tight).item() + 1)
for sim_dists, label in zip(sim_add_average, pseudo_labels_tight):
cluster_tight_average[label.item()] += sim_dists
cluster_final_average = torch.zeros(len(sim_add_average))
for i, label_tight in enumerate(pseudo_labels_tight):
cluster_final_average[i] = cluster_tight_average[label_tight.item()]
return cluster_final_average, cluster_I_average
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
main_worker(args)
def main_worker(args):
global start_epoch, best_mAP
best_mAP =0
best_rank1 = 0
start_time = time.monotonic()
cudnn.benchmark = True
sys.stdout = Logger(osp.join(args.logs_dir, args.dataset, 'maskcl.txt'))
print("==========\nArgs:{}\n==========".format(args))
iters = args.iters if (args.iters>0) else None
print("==> Load unlabeled dataset")
args.data_dir = '/root/pxu1/datasets/{}_all'.format(args.dataset)
dataset = get_data(args.dataset, args.data_dir)
test_loader = get_test_loader(dataset, args.height, args.width, args.batch_size, args.workers)
if args.dataset == 'prcc':
datasets_prcc = []
test_loaders_prcc = []
for _ in range(10):
dataset_cur = get_data(args.dataset, args.data_dir)
test_loader_cur = get_test_loader(dataset_cur, args.height, args.width, args.batch_size, args.workers)
datasets_prcc.append(dataset_cur)
test_loaders_prcc.append(test_loader_cur)
model_rgb = create_model(args)
model_mask = create_model(args)
model_fusion = Embedding_model(model_rgb.module.num_features)
model_fusion.cuda()
model_fusion = torch.nn.DataParallel(model_fusion)
evaluator1 = Evaluator(model_rgb)
memory_rgb = HybridMemory(model_rgb.module.num_features, len(dataset.train),
temp=args.temp, momentum=args.momentum).cuda()
memory_mask = HybridMemory(model_mask.module.num_features, len(dataset.train),
temp=args.temp, momentum=args.momentum).cuda()
memory_fusion = HybridMemory(model_fusion.module.num_features, len(dataset.train),
temp=args.temp, momentum=args.momentum).cuda()
cluster_loader = get_test_loader(dataset, args.height, args.width,
args.batch_size, args.workers, testset=sorted(dataset.train))
features, _, _ = extract_features(model_rgb, cluster_loader, print_freq=50)
features = torch.cat([features[f].unsqueeze(0) for f, _, _, _ in sorted(dataset.train)], 0)
_, features2, _= extract_features(model_mask, cluster_loader, print_freq=50)
features2 = torch.cat([features2[f].unsqueeze(0) for f, _, _, _ in sorted(dataset.train)], 0)
memory_rgb.features = F.normalize(features, dim=1).cuda()
memory_mask.features = F.normalize(features2, dim=1).cuda()
memory_fusion.features = F.normalize(features, dim=1).cuda()
del cluster_loader, features, features2
params = []
print('prepare parameter')
models = [model_rgb, model_mask, model_fusion]
for model in models:
for key, value in model.named_parameters():
if value.requires_grad:
params += [{"params": [value], "lr": args.lr, "weight_decay": args.weight_decay}]
optimizer = torch.optim.Adam(params)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=0.1)
# Trainer
print('==> Start training')
trainer = Mask_CACLSIC_USL(model_rgb, model_mask, model_fusion, memory_rgb, memory_mask, memory_fusion)
start_score = 0
for epoch in range(args.epochs):
print('==> Create pseudo labels for unlabeled data with self-paced policy')
features = memory_rgb.features.clone()
now_time_before_cluster = time.monotonic()
rerank_dist = compute_jaccard_distance(features.cpu(), k1=args.k1, k2=args.k2)
del features
if (epoch==0):
params = {
'eps': args.eps,
'eps_tight': args.eps - args.eps_gap,
'eps_loose': args.eps + args.eps_gap,
'min_samples': 4,
'metric': 'precomputed',
'n_jobs': -1
}
print('Clustering criterion: eps: {:.3f}, eps_tight: {:.3f}, eps_loose: {:.3f}'.format(params['eps'], params['eps_tight'], params['eps_loose']))
cluster = DBSCAN(eps=params['eps'], min_samples=params['min_samples'], metric=params['metric'], n_jobs=params['n_jobs'])
cluster_tight = DBSCAN(eps=params['eps_tight'], min_samples=params['min_samples'], metric=params['metric'], n_jobs=params['n_jobs'])
cluster_loose = DBSCAN(eps=params['eps_loose'], min_samples=params['min_samples'], metric=params['metric'], n_jobs=params['n_jobs'])
def generate_pseudo_labels(cluster_id, num):
labels = []
outliers = 0
for i, ((fname, _, _, cid), id) in enumerate(zip(sorted(dataset.train), cluster_id)):
label = id if id != -1 else num + outliers
labels.append(label)
if id == -1:
outliers += 1
return torch.Tensor(labels).long()
pseudo_labels = cluster.fit_predict(rerank_dist)
pseudo_labels_tight = cluster_tight.fit_predict(rerank_dist)
num_ids = len(set(pseudo_labels)) - (1 if -1 in pseudo_labels else 0)
num_ids_tight = len(set(pseudo_labels_tight)) - (1 if -1 in pseudo_labels_tight else 0)
pseudo_labels = generate_pseudo_labels(pseudo_labels, num_ids)
pseudo_labels_tight = generate_pseudo_labels(pseudo_labels_tight, num_ids_tight)
index2label = collections.defaultdict(int)
for label in pseudo_labels:
index2label[label.item()]+=1
index2label = np.fromiter(index2label.values(), dtype=float)
N = pseudo_labels.size(0)
print('==> Statistics for epoch {}: {} clusters, {} un-clustered instances\n'
.format(epoch, (index2label>1).sum(), (index2label==1).sum()))
pseudo_labels_old = pseudo_labels.clone()
index2label_old = index2label.copy()
# =====================================================
if args.cr:
print('cluster refinement')
pseudo_labeled_dataset = []
outliers = 0
cluster_final_averge, cluster_I_average = cluster_finement_new(index2label, pseudo_labels, rerank_dist,pseudo_labels_tight )
for i, ((fname, _, clothes_id, cid), label) in enumerate(zip(sorted(dataset.train), pseudo_labels)):
D_score = cluster_final_averge[i]
if args.ratio_cluster * D_score.item() <= cluster_I_average[label.item()]:
pseudo_labeled_dataset.append((fname,label.item(),clothes_id, cid))
else:
pseudo_labeled_dataset.append((fname,len(cluster_I_average)+outliers,clothes_id, cid))
pseudo_labels[i] = len(cluster_I_average)+outliers
outliers+=1
# =====================================================
now_time_after_cluster = time.monotonic()
print(
'the time of cluster refinement is {}'.format(now_time_before_cluster-now_time_after_cluster)
)
else:
print('No cluster refinement')
pseudo_labeled_dataset = []
for i, ((fname, pid, clothes_id, cid), label) in enumerate(zip(sorted(dataset.train), pseudo_labels)):
pseudo_labeled_dataset.append((fname,label.item(),clothes_id, cid))
index2label = collections.defaultdict(int)
for label in pseudo_labels:
index2label[label.item()]+=1
index2label = np.fromiter(index2label.values(), dtype=float)
print('==> Statistics for epoch {}: {} clusters, {} un-clustered instances\n'
.format(epoch, (index2label>1).sum(), (index2label==1).sum()))
label_count = pseudo_labels.expand(N, N).eq(pseudo_labels.expand(N, N).t()).float()
label_count = label_count.sum(-1)
# # KNN find the dist:
@torch.no_grad()
def generate_cluster_features(labels, features):
centers = collections.defaultdict(list)
for i, label in enumerate(labels):
if label.item() == -1:
continue
centers[labels[i].item()].append(features[i])
centers = [
torch.stack(centers[idx], dim=0).mean(0) for idx in sorted(centers.keys())
]
centers = torch.stack(centers, dim=0)
return centers
#基于灰度的聚类中心
def cosinematrix(A, p=2, dim=1):
if A.dim() != 2:
raise ValueError("Input matrix must be 2-dimensional.")
norm = torch.norm(A, p=p, dim=dim).unsqueeze(dim)
prod = torch.mm(A, A.t())
cos = prod.div(torch.mm(norm.t(), norm))
return cos
faetures4 = memory_fusion.features.clone()
center_feature = generate_cluster_features(pseudo_labels, faetures4)
del faetures4
center_feature = center_feature.cpu()
center_feature = cosinematrix(center_feature)
center_feature_men = center_feature.sort(descending=True)[0]
center_feature = center_feature.sort(descending=True)[1]
knn_epoch = int((args.allknn/args.epochs) * epoch)
print(knn_epoch)
if knn_epoch > 0:
memory_center_sort_index = torch.zeros(N, knn_epoch+2)
memory_center_sort_similar = torch.zeros(N, knn_epoch+2)
pse_set = list(set(list(pseudo_labels.numpy())))
for index in range(len(label_count)):
memory_center_sort_index[index] = center_feature[pse_set.index(pseudo_labels[index].item())][0:knn_epoch+2]
memory_center_sort_similar[index] = center_feature_men[pse_set.index(pseudo_labels[index].item())][0:knn_epoch+2]
memory_fusion.feature_sort = memory_center_sort_index.clone().cuda()
memory_fusion.knn_epoch = torch.tensor(knn_epoch)
memory_fusion.center_feature_men = memory_center_sort_similar.clone().cuda()
memory_rgb.feature_sort = memory_center_sort_index.clone().cuda()
memory_rgb.knn_epoch = torch.tensor(knn_epoch)
memory_rgb.center_feature_men = memory_center_sort_similar.clone().cuda()
memory_mask.feature_sort = memory_center_sort_index.clone().cuda()
memory_mask.knn_epoch = torch.tensor(knn_epoch)
memory_mask.center_feature_men = memory_center_sort_similar.clone().cuda()
del center_feature, center_feature_men, pse_set
memory_rgb.label_count = label_count
memory_mask.label_count = label_count
memory_fusion.label_count = label_count
memory_rgb.labels = pseudo_labels.cuda()
memory_mask.labels = pseudo_labels.cuda()
memory_fusion.labels = pseudo_labels.cuda()
train_loader1 = get_train_loader(args, dataset, args.height, args.width,
args.batch_size, args.workers, args.num_instances, iters,
trainset=pseudo_labeled_dataset)
train_loader1.new_epoch()
trainer.train(epoch, train_loader1, optimizer,print_freq=args.print_freq, train_iters=len(train_loader1))
now_time_after_epoch = time.monotonic()
print(
'the time of cluster refinement is {}'.format(now_time_after_epoch-now_time_before_cluster)
)
if epoch > 30:
args.eval_step = 1
if ((epoch+1)%args.eval_step==0 or (epoch==args.epochs-1)):
if args.dataset == 'prcc':
mAP, cmc_now, cmc_now_10 = evaluate_mean(evaluator1, datasets_prcc, test_loaders_prcc)
else:
cmc_socore1,mAP1 = evaluator1.evaluate(test_loader, dataset.query, dataset.gallery, cmc_flag=False)
mAP, cmc_now, cmc_now_10 = mAP1, cmc_socore1[0], cmc_socore1[9]
print('===============================================')
print('the RGB model performance')
print('model mAP: {:5.1%}'.format(mAP))
print('model cmc: {:5.1%}'.format(cmc_now))
print('model cmc_10: {:5.1%}'.format(cmc_now_10))
print('===============================================')
is_best = (mAP>best_mAP)
is_bset = (cmc_now > best_rank1)
best_mAP = max(mAP, best_mAP)
best_rank1 = max(cmc_now, best_rank1)
save_checkpoint({
'state_dict': model_mask.state_dict(),
'epoch': epoch + 1,
'best_mAP': best_mAP,
}, is_best,fpath=osp.join(args.logs_dir, args.dataset, 'model_2_checkpoint.pth.tar'))
save_checkpoint({
'state_dict': model_rgb.state_dict(),
'epoch': epoch + 1,
'best_mAP': best_mAP,
}, is_best,fpath=osp.join(args.logs_dir, args.dataset, 'checkpoint.pth.tar'))
print('\n * Finished epoch {:3d} model cmc: {:5.1%} best: {:5.1%}{}\n'.format(epoch, cmc_now, best_rank1, ' *' if is_best else ''))
lr_scheduler.step()
print ('==> Test with the best model:')
checkpoint = load_checkpoint(osp.join(args.logs_dir, args.dataset, 'model_best.pth.tar'))
model_rgb.load_state_dict(checkpoint['state_dict'])
if args.dataset == 'prcc':
mAP, cmc_now, cmc_now_10 = evaluate_mean(evaluator1, datasets_prcc, test_loaders_prcc)
else:
cmc_socore1,mAP1 = evaluator1.evaluate(test_loader, dataset.query, dataset.gallery, cmc_flag=False)
mAP, cmc_now, cmc_now_10 = mAP1, cmc_socore1[0], cmc_socore1[9]
print('=================RGB===================')
print('the RGB model performance')
print('model mAP: {:5.1%}'.format(mAP))
print('model cmc: {:5.1%}'.format(cmc_now))
print('model cmc_10: {:5.1%}'.format(cmc_now_10))
print('===============================================')
end_time = time.monotonic()
print('Total running time: ', timedelta(seconds=end_time - start_time))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Mask_CACL")
# data
parser.add_argument('-d', '--dataset', type=str, default='ltcc',
choices=datasets.names())
parser.add_argument('-b', '--batch-size', type=int, default=64)
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('--height', type=int, default=256, help="input height")
parser.add_argument('--width', type=int, default=128, help="input width")
parser.add_argument('--num-instances', type=int, default=4,
help="each minibatch consist of "
"(batch_size // num_instances) identities, and "
"each identity has num_instances instances, "
"default: 0 (NOT USE)")
# cluster
parser.add_argument('--eps', type=float, default=0.60,
help="max neighbor distance for DBSCAN")
parser.add_argument('--eps-gap', type=float, default=0.02,
help="multi-scale criterion for measuring cluster reliability")
parser.add_argument('--k1', type=int, default=30,
help="hyperparameter for jaccard distance")
parser.add_argument('--k2', type=int, default=6,
help="hyperparameter for jaccard distance")
parser.add_argument('--output_weight', type=float, default=1.0,
help="loss outputs for weight ")
parser.add_argument('--ratio_cluster', type=float, default=1.0,
help="cluster hypter ratio ")
parser.add_argument('--allknn', type=int, default=0,
help="knn ")
parser.add_argument('--cr', action="store_true", default=False,
help="use cluster refinement in CACL")
# model
parser.add_argument('-a', '--arch', type=str, default='resnet50',
choices=models.names())
parser.add_argument('--features', type=int, default=0)
parser.add_argument('--dropout', type=float, default=0)
parser.add_argument('--momentum', type=float, default=0.2,
help="update momentum for the hybrid memory")
parser.add_argument('--loss-size', type=int, default=2)
# optimizer
parser.add_argument('--lr', type=float, default=0.00035,
help="learning rate")
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--epochs', type=int, default=60)
parser.add_argument('--iters', type=int, default=400)
parser.add_argument('--step-size', type=int, default=20)
parser.add_argument('--sic_weight', type=float, default=1,
help="loss outputs for sic ")
# training configs
parser.add_argument('--seed', type=int, default=111)#
parser.add_argument('--print-freq', type=int, default=200)
parser.add_argument('--eval-step', type=int, default=5)
parser.add_argument('--temp', type=float, default=0.05,
help="temperature for scaling contrastive loss")
# path
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
main()