-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstTools.py
275 lines (214 loc) · 8.97 KB
/
stTools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import datetime
import streamlit as st
import yfinance
import datetime as dt
from assets.Collector import InfoCollector
import plotly.graph_objects as go
from streamlit_extras.metric_cards import style_metric_cards
import pandas as pd
from assets import Portfolio
from assets import Stock
import plotly.express as px
def create_state_variable(key: str, default_value: any) -> None:
if key not in st.session_state:
st.session_state[key] = default_value
def create_stock_text_input(
state_variable: str,
default_value: str,
present_text: str,
key: str
) -> None:
create_state_variable(state_variable, default_value)
st.session_state[state_variable] = st.text_input(present_text,
key=key,
value=st.session_state[state_variable])
def create_date_input(
state_variable: str,
present_text: str,
default_value: str,
key: str
) -> None:
create_state_variable(state_variable, default_value)
st.session_state[state_variable] = st.date_input(present_text,
value=st.session_state[state_variable],
key=key)
def get_stock_demo_data(no_stocks: int) -> list:
stock_name_list = ['AAPL', 'TSLA', 'GOOG', 'MSFT',
'AMZN', 'META', 'NVDA', 'PYPL',
'NFLX', 'ADBE', 'INTC', 'CSCO', ]
return stock_name_list[:no_stocks]
def click_button_sim() -> None:
st.session_state["run_simulation"] = True
st.session_state["run_simulation_check"] = True
def click_button_port() -> None:
st.session_state["load_portfolio"] = True
st.session_state["load_portfolio_check"] = True
st.session_state["run_simulation_check"] = False
def preview_stock(
session_state_name: str,
start_date: datetime.datetime
) -> None:
stock_data = yfinance.download(st.session_state[session_state_name],
start=start_date,
end=dt.datetime.now())
stock_data = stock_data[['Close']]
color = None
# get price difference of close
diff_price = stock_data.iloc[-1]['Close'] - stock_data.iloc[0]['Close']
if diff_price > 0.0:
color = '#00fa119e'
elif diff_price < 0.0:
color = '#fa00009e'
# change index form 0 to end
stock_data['day(s) since buy'] = range(0, len(stock_data))
create_metric_card(label=st.session_state[session_state_name],
value=f"{stock_data.iloc[-1]['Close']: .2f}",
delta=f"{diff_price: .2f}")
st.area_chart(stock_data, use_container_width=True,
height=250, width=250, color=color, x='day(s) since buy')
def format_currency(number: float) -> str:
formatted_number = "${:,.2f}".format(number)
return formatted_number
def create_side_bar_width() -> None:
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"]{
min-width: 450px;
max-width: 600px;
}
""",
unsafe_allow_html=True,
)
def remove_white_space():
st.markdown("""
<style>
.block-container {
padding-top: 1rem;
}
</style>
""", unsafe_allow_html=True)
def get_current_date() -> str:
return datetime.datetime.now().strftime('%Y-%m-%d')
def create_candle_stick_plot(stock_ticker_name: str, stock_name: str) -> None:
# present stock name
stock = InfoCollector.get_ticker(stock_ticker_name)
stock_data = InfoCollector.get_history(stock, period="1d", interval='5m')
stock_data_template = InfoCollector.get_demo_daily_history(interval='5m')
stock_data = stock_data[['Open', 'High', 'Low', 'Close']]
# get the first row open price
open_price = stock_data.iloc[0]['Open']
# get the last row close price
close_price = stock_data.iloc[-1]['Close']
# get the last row high price
diff_price = close_price - open_price
# metric card
create_metric_card(label=f"{stock_name}",
value=f"{close_price: .2f}",
delta=f"{diff_price: .2f}")
# candlestick chart
candlestick_chart = go.Figure(data=[
go.Candlestick(x=stock_data_template.index,
open=stock_data['Open'],
high=stock_data['High'],
low=stock_data['Low'],
close=stock_data['Close'])])
candlestick_chart.update_layout(xaxis_rangeslider_visible=False,
margin=dict(l=0, r=0, t=0, b=0))
st.plotly_chart(candlestick_chart, use_container_width=True, height=100)
def create_stocks_dataframe(stock_ticker_list: list, stock_name: list) -> pd.DataFrame:
close_price = []
daily_change = []
pct_change = []
all_price = []
for stock_ticker in stock_ticker_list:
stock = InfoCollector.get_ticker(stock_ticker)
stock_data = InfoCollector.get_history(stock, period="1d", interval='5m')
# round value to 2 digits
close_price_value = round(stock_data.iloc[-1]['Close'], 2)
close_price.append(close_price_value)
# round value to 2 digits
daily_change_value = round(stock_data.iloc[-1]['Close'] - stock_data.iloc[0]['Open'], 2)
daily_change.append(daily_change_value)
# round value to 2 digits
pct_change_value = round((stock_data.iloc[-1]['Close'] - stock_data.iloc[0]['Open'])
/ stock_data.iloc[0]['Open'] * 100, 2)
pct_change.append(pct_change_value)
all_price.append(stock_data['Close'].tolist())
df_stocks = pd.DataFrame(
{
"stock_tickers": stock_ticker_list,
"stock_name": stock_name,
"close_price": close_price,
"daily_change": daily_change,
"pct_change": pct_change,
"views_history": all_price
}
)
return df_stocks
def win_highlight(val: str) -> str:
color = None
val = str(val)
val = val.replace(',', '')
if float(val) >= 0.0:
color = '#00fa119e'
elif float(val) < 0.0:
color = '#fa00009e'
return f'background-color: {color}'
def create_dateframe_view(df: pd.DataFrame) -> None:
df['close_price'] = df['close_price'].apply(lambda x: f'{x:,.2f}')
df['daily_change'] = df['daily_change'].apply(lambda x: f'{x:,.2f}')
df['pct_change'] = df['pct_change'].apply(lambda x: f'{x:,.2f}')
st.dataframe(
df.style.map(win_highlight,
subset=['daily_change', 'pct_change']),
column_config={
"stock_tickers": "Tickers",
"stock_name": "Stock",
"close_price": "Price ($)",
"daily_change": "Price Change ($)", # if positive, green, if negative, red
"pct_change": "% Change", # if positive, green, if negative, red
"views_history": st.column_config.LineChartColumn(
"daily trend"),
},
hide_index=True,
width=620,
)
def build_portfolio(no_stocks: int) -> Portfolio.Portfolio:
# build portfolio using portfolio class
my_portfolio = Portfolio.Portfolio()
for i in range(no_stocks):
stock = Stock.Stock(stock_name=st.session_state[f"stock_{i + 1}_name"])
stock.add_buy_action(quantity=int(st.session_state[f"stock_{i + 1}_share"]),
purchase_date=st.session_state[f"stock_{i + 1}_purchase_date"])
my_portfolio.add_stock(stock=stock)
return my_portfolio
def get_metric_bg_color() -> str:
return "#282C35"
def create_metric_card(label: str, value: str, delta: str) -> None:
st.metric(label=label,
value=value,
delta=delta)
background_color = get_metric_bg_color()
style_metric_cards(background_color=background_color)
def create_pie_chart(key_values: dict) -> None:
labels = list(key_values.keys())
values = list(key_values.values())
# Use `hole` to create a donut-like pie chart
fig = go.Figure(data=[go.Pie(labels=labels, values=values, textinfo='label+percent',
insidetextorientation='radial'
)],
)
# do not show legend
fig.update_layout(xaxis_rangeslider_visible=False,
margin=dict(l=20, r=20, t=20, b=20),
showlegend=False)
st.plotly_chart(fig, use_container_width=True, use_container_height=True)
def create_line_chart(portfolio_df: pd.DataFrame) -> None:
fig = px.line(portfolio_df)
fig.update_layout(xaxis_rangeslider_visible=False,
margin=dict(l=20, r=20, t=20, b=20),
showlegend=False,
xaxis_title="Day(s) since purchase",
yaxis_title="Portfolio Value ($)")
st.plotly_chart(fig, use_container_width=True, use_container_height=True)