forked from bernhardkaplan/bcpnn-mt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_colormaps.py
executable file
·86 lines (69 loc) · 2.21 KB
/
plot_colormaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import pylab
import numpy as np
import sys
import os
if (len(sys.argv) < 2):
print("Please enter data folder to be analysed after the script name")
print("e.g.\npython analyse_data_folder.py data_today/ ")
exit(1)
else:
fn = sys.argv[1]
print sys.argv[1:]
for fn in sys.argv[1:]:
path = os.path.abspath(fn)
print "loading data ....", fn
# if it's only one line:
#d = np.loadtxt(path)
#data = np.zeros((1, d.size))
#for i in xrange(d.size):
# data[0, i] = d[i]
try:
data = np.loadtxt(path, delimiter=",")#.transpose()
except:
data = np.loadtxt(path)
# data = np.exp(data)
# data = data[1000:,:]
# print '\nEXPONENTIAL VALUES PLOTTED!!!\n'
# LOG
# n_row = data[:, 0].size
# n_col = data[0, :].size
# log_data = np.zeros((n_row, n_col))
# for i in xrange(n_row):
# for j in xrange(n_col):
# if data[i, j] > 0:
# log_data[i, j] = np.log(data[i, j])
# data = log_data.copy()
# print '\nLOGARITHMIC VALUES PLOTTED!!!\n'
#data_rev = np.zeros(data.shape)
#n_row = data[:, 0].size - 1
#for row in xrange(data[:, 0].size):
# data_rev[n_row - row, :] = data[row, :]
fig = pylab.figure()
# fig = pylab.figure(facecolor='black')
ax = fig.add_subplot(111)
print "plotting ...."
#cax = ax.imshow(data[:,:12])
#cax = ax.pcolor(data, edgecolor='k', linewidths='1')
# n_hc = 30
# n_cells_per_hc = 16
# n_time_steps = data[:, 0].size
# for t in xrange(n_time_steps):
# for hc in xrange(n_hc):
# idx0 = hc * n_cells_per_hc
# idx1 = (hc + 1) * n_cells_per_hc
# s = data[t, idx0:idx1].sum()
# if s > 1.0:
# print 'hc %d t %d %.20e' % (hc, t, s)
ax.set_title(fn)
cmap = 'jet'
cax = ax.pcolormesh(data, cmap=cmap)#, edgecolor='k', linewidths='1')
# cax = ax.pcolormesh(data, cmap='binary')
#cax = ax.pcolormesh(data, cmap='RdBu')
ax.set_ylim(0, data.shape[0])
ax.set_xlim(0, data.shape[1])
#cax = ax.pcolor(log_data)#, edgecolor='k', linewidths='1')
pylab.colorbar(cax)
#plot_fn = "testfig.png"
#print "saving ....", plot_fn
#pylab.savefig(plot_fn)
pylab.show()