-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilters.py
96 lines (80 loc) · 3.15 KB
/
filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import settings as s
from utils import clone
def filter_median(image, size):
if (size % 2 == 0):
size += 1
new_image = clone(image)
for h in range(s.height):
for w in range(s.width):
medians = []
for py in range(max(0, h - size // 2), min(s.height, h + size // 2 + 1)):
for px in range(max(0, w - size // 2), min(s.width, w + size // 2 + 1)):
medians.append(image[py][px])
medians.sort()
new_image[h][w] = medians[len(medians) // 2 + 1]
return new_image
def convolution(image, filter, size):
new_image = clone(image)
for h in range(s.height):
for w in range(s.width):
conv = 0
for py in range(-size // 2, size // 2 + 1):
if not (((py + h) < 0) or ((py + h) >= s.height)):
for px in range(-size // 2, size // 2 + 1):
if not (((px + w) < 0) or ((px + w) >= s.width)):
conv += image[py + h][px + w] * filter[py + size // 2][px + size // 2]
if (conv < 0):
conv = 0
if (conv > s.graylevel):
conv = s.graylevel
new_image[h][w] = int(conv)
return new_image
def filter_average(image, size):
if (size % 2 == 0):
size += 1
filter = [[1 / size ** 2 for i in range(size)] for j in range(size)]
return convolution(image, filter, size)
def filter_gauss(image, size):
if (size % 2 == 0):
size += 1
filter = [[1 for i in range(size)] for j in range(size)]
sum = 0
center = size // 2
for py in range(-center, center + 1):
for px in range(-center, center + 1):
filter[py + center][px + center] = 2 ** (center ** 2 - abs(py) - abs(px))
sum += filter[py + center][px + center]
for py in range(-center, center + 1):
for px in range(-center, center + 1):
filter[py + center][px + center] /= sum
return convolution(image, filter, size)
def filter_highboost(image, size):
image_low = filter_average(image, size)
new_image = clone(image)
for h in range(s.height):
for w in range(s.width):
new_image[h][w] = abs(image[h][w] - image_low[h][w])
return new_image
def filter_high(image):
filter = [[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]
return convolution(image, filter, 3)
def filter_laplace(image):
filter = [[0, -1, 0], [-1, 5, -1], [0, -1, 0]]
return convolution(image, filter, 3)
def filter_prewitt(image, size):
new_image = clone(image)
if (size % 2 == 0):
size += 1
filterh = [[i for i in range(-size // 2, size // 2 + 1)] for j in range(size)]
filterv = [[j for i in range(0, size)] for j in range(-size // 2, size // 2 + 1)]
prewitth= convolution(image, filterh, size)
prewittv = convolution(image, filterv, size)
for h in range(s.height):
for w in range(s.width):
conv=(prewitth[h][w]**2 + prewittv[h][w]**2)**0.5
if (conv < 0):
conv = 0
if (conv > s.graylevel):
conv = s.graylevel
new_image[h][w]=int(conv)
return new_image