-
-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmetrics.mqh
390 lines (319 loc) · 14.2 KB
/
metrics.mqh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
//+------------------------------------------------------------------+
//| metrics.mqh |
//| Copyright 2022, Fxalgebra.com |
//| https://www.mql5.com/en/users/omegajoctan |
//+------------------------------------------------------------------+
#property copyright "Copyright 2022, Fxalgebra.com"
#property link "https://www.mql5.com/en/users/omegajoctan"
//+------------------------------------------------------------------+
//| defines |
//| |
//| |
//+------------------------------------------------------------------+
#include <MALE5\MatrixExtend.mqh>
#include <MALE5\MqPlotLib\plots.mqh>
struct roc_curve_struct
{
vector TPR,
FPR,
Thresholds;
};
struct confusion_matrix_struct
{
matrix MATRIX;
vector CLASSES;
vector TP,
TN,
FP,
FN;
};
enum regression_metrics
{
METRIC_R_SQUARED, // R-squared
METRIC_ADJUSTED_R, // Adjusted R-squared
METRIC_RSS, // Residual Sum of Squares
METRIC_MSE, // Mean Squared Error
METRIC_RMSE, // Root Mean Squared Error
METRIC_MAE // Mean Absolute Error
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
class Metrics
{
protected:
static int SearchPatterns(const vector &True, int value_A, const vector &B, int value_B);
static confusion_matrix_struct confusion_matrix(const vector &True, const vector &Preds);
public:
Metrics(void);
~Metrics(void);
//--- Regression metrics
static double r_squared(const vector &True, const vector &Pred);
static double adjusted_r(const vector &True, const vector &Pred, uint indep_vars = 1);
static double rss(const vector &True, const vector &Pred);
static double mse(const vector &True, const vector &Pred);
static double rmse(const vector &True, const vector &Pred);
static double mae(const vector &True, const vector &Pred);
static double RegressionMetric(const vector &True, const vector &Pred, regression_metrics METRIC_);
//--- Classification metrics
static double accuracy_score(const vector &True, const vector &Pred);
static vector accuracy(const vector &True, const vector &Preds);
static vector precision(const vector &True, const vector &Preds);
static vector recall(const vector &True, const vector &Preds);
static vector f1_score(const vector &True, const vector &Preds);
static vector specificity(const vector &True, const vector &Preds);
static roc_curve_struct roc_curve(const vector &True, const vector &Preds, bool show_roc_curve=false);
static void classification_report(const vector &True, const vector &Pred, bool show_roc_curve=false);
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
Metrics::Metrics(void)
{
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
Metrics::~Metrics(void)
{
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
double Metrics::r_squared(const vector &True, const vector &Pred)
{
return(Pred.RegressionMetric(True, REGRESSION_R2));
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
double Metrics::adjusted_r(const vector &True, const vector &Pred, uint indep_vars = 1)
{
if(True.Size() != Pred.Size())
{
Print(__FUNCTION__, " Vector True and P are not equal in size ");
return(0);
}
double r2 = r_squared(True, Pred);
ulong N = Pred.Size();
return(1 - ((1 - r2) * (N - 1)) / (N - indep_vars - 1));
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
confusion_matrix_struct Metrics::confusion_matrix(const vector &True, const vector &Preds)
{
confusion_matrix_struct confusion_matrix;
vector classes = MatrixExtend::Unique(True);
confusion_matrix.CLASSES = classes;
//--- Fill the confusion matrix
matrix MATRIX(classes.Size(), classes.Size());
MATRIX.Fill(0.0);
for(ulong i = 0; i < classes.Size(); i++)
for(ulong j = 0; j < classes.Size(); j++)
MATRIX[i][j] = SearchPatterns(True, (int)classes[i], Preds, (int)classes[j]);
confusion_matrix.MATRIX = MATRIX;
confusion_matrix.TP = MATRIX.Diag();
confusion_matrix.FP = MATRIX.Sum(0) - confusion_matrix.TP;
confusion_matrix.FN = MATRIX.Sum(1) - confusion_matrix.TP;
confusion_matrix.TN = MATRIX.Sum() - (confusion_matrix.TP + confusion_matrix.FP + confusion_matrix.FN);
return confusion_matrix;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
vector Metrics::accuracy(const vector &True,const vector &Preds)
{
confusion_matrix_struct conf_m = confusion_matrix(True, Preds);
return (conf_m.TP + conf_m.TN) / conf_m.MATRIX.Sum();
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
vector Metrics::precision(const vector &True,const vector &Preds)
{
confusion_matrix_struct conf_m = confusion_matrix(True, Preds);
return conf_m.TP / (conf_m.TP + conf_m.FP + DBL_EPSILON);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
vector Metrics::f1_score(const vector &True,const vector &Preds)
{
vector precision = precision(True, Preds);
vector recall = recall(True, Preds);
return 2 * precision * recall / (precision + recall + DBL_EPSILON);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
vector Metrics::recall(const vector &True,const vector &Preds)
{
confusion_matrix_struct conf_m = confusion_matrix(True, Preds);
return conf_m.TP / (conf_m.TP + conf_m.FN + DBL_EPSILON);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
vector Metrics::specificity(const vector &True,const vector &Preds)
{
confusion_matrix_struct conf_m = confusion_matrix(True, Preds);
return conf_m.TN / (conf_m.TN + conf_m.FP + DBL_EPSILON);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
roc_curve_struct Metrics::roc_curve(const vector &True,const vector &Preds, bool show_roc_curve=false)
{
roc_curve_struct roc;
confusion_matrix_struct conf_m = confusion_matrix(True, Preds);
roc.TPR = recall(True, Preds);
roc.FPR = conf_m.FP / (conf_m.FP + conf_m.TN + DBL_EPSILON);
if (show_roc_curve)
{
CPlots plt;
plt.Plot("Roc Curve",roc.FPR,roc.TPR,"roc_curve","False Positive Rate(FPR)","True Positive Rate(TPR)");
while (MessageBox("Close or Cancel ROC CURVE to proceed","Roc Curve",MB_OK)<0)
Sleep(1);
}
return roc;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
double Metrics::accuracy_score(const vector &True, const vector &Preds)
{
confusion_matrix_struct conf_m = confusion_matrix(True, Preds);
return conf_m.MATRIX.Diag().Sum() / (conf_m.MATRIX.Sum() + DBL_EPSILON);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void Metrics::classification_report(const vector &True, const vector &Pred, bool show_roc_curve=false)
{
vector accuracy = accuracy(True, Pred);
vector precision = precision(True, Pred);
vector specificity = specificity(True, Pred);
vector recall = recall(True, Pred);
vector f1_score = f1_score(True, Pred);
double acc = accuracy_score(True, Pred);
confusion_matrix_struct conf_m = confusion_matrix(True, Pred);
//--- support
ulong size = conf_m.MATRIX.Rows();
vector support(size);
for(ulong i = 0; i < size; i++)
support[i] = NormalizeDouble(MathIsValidNumber(conf_m.MATRIX.Row(i).Sum()) ? conf_m.MATRIX.Row(i).Sum() : 0, 8);
int total_size = (int)conf_m.MATRIX.Sum();
//--- Avg and w avg
vector avg, w_avg;
avg.Resize(5);
w_avg.Resize(5);
avg[0] = precision.Mean();
avg[1] = recall.Mean();
avg[2] = specificity.Mean();
avg[3] = f1_score.Mean();
avg[4] = total_size;
//--- w avg
vector support_prop = support / double(total_size + 1e-10);
vector c = precision * support_prop;
w_avg[0] = c.Sum();
c = recall * support_prop;
w_avg[1] = c.Sum();
c = specificity * support_prop;
w_avg[2] = c.Sum();
c = f1_score * support_prop;
w_avg[3] = c.Sum();
w_avg[4] = (int)total_size;
//--- Report
string report = "\n[CLS] \t\t\t\t\t\t\tprecision \trecall \tspecificity \tf1 score \tsupport";
for(ulong i = 0; i < size; i++)
{
report += "\n\t\t[" + string(conf_m.CLASSES[i])+"]\t\t\t";
//for (ulong j=0; j<3; j++)
report += StringFormat("\t\t\t\t\t %.2f \t\t\t\t\t %.2f \t\t\t\t\t %.2f \t\t\t\t\t %.2f \t\t\t\t %d", precision[i], recall[i], specificity[i], f1_score[i], (int)support[i]);
}
report += "\n";
report += StringFormat("\naccuracy\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t %.2f \t\t\t\t %d",acc,(int)conf_m.MATRIX.Sum());
report += StringFormat("\naverage\t\t\t\t\t\t\t\t\t %.2f \t\t\t\t\t %.2f \t\t\t\t\t %.2f \t\t\t\t\t %.2f \t\t\t\t %d", avg[0], avg[1], avg[2], avg[3], (int)avg[4]);
report += StringFormat("\nWeighed avg\t\t\t \t %.2f \t\t\t\t\t %.2f \t\t\t\t\t %.2f \t\t\t\t\t %.2f \t\t\t\t %d", w_avg[0], w_avg[1], w_avg[2], w_avg[3], (int)w_avg[4]);
Print("Confusion Matrix\n", conf_m.MATRIX);
Print("\nClassification Report\n", report);
roc_curve(True, Pred, show_roc_curve);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
double Metrics::rss(const vector &True, const vector &Pred)
{
vector c = True - Pred;
c = MathPow(c, 2);
return (c.Sum());
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
double Metrics::mse(const vector &True, const vector &Pred)
{
vector c = True - Pred;
c = MathPow(c, 2);
return(c.Sum() / c.Size());
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
int Metrics::SearchPatterns(const vector &True, int value_A, const vector &B, int value_B)
{
int count=0;
for(ulong i = 0; i < True.Size(); i++)
if(True[i] == value_A && B[i] == value_B)
count++;
return count;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
double Metrics::rmse(const vector &True, const vector &Pred)
{
return Pred.RegressionMetric(True, REGRESSION_RMSE);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
double Metrics::mae(const vector &True, const vector &Pred)
{
return Pred.RegressionMetric(True, REGRESSION_MAE);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
double Metrics::RegressionMetric(const vector &True,const vector &Pred,regression_metrics METRIC_)
{
double err = 0;
switch (METRIC_)
{
case METRIC_MSE:
err = mse(True, Pred);
break;
case METRIC_RMSE:
err = rmse(True, Pred);
break;
case METRIC_MAE:
err = mae(True, Pred);
break;
case METRIC_RSS:
err = rss(True, Pred);
break;
case METRIC_R_SQUARED:
err = r_squared(True, Pred);
break;
case METRIC_ADJUSTED_R:
err = adjusted_r(True, Pred);
break;
default:
break;
}
return err;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+