-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdiscriminantanalysis.py
86 lines (63 loc) · 2.53 KB
/
discriminantanalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
from ..base import BaseClassifier
class LDA(BaseClassifier):
'''LDA Classifier'''
def __init__(self):
self.sigma = 0
self.pi = 0
self.mu = 0
self.labels = 0
def fit(self,X,y):
self.labels,Nk = np.unique(y, return_counts=True) ## Computing Nk
self.pi = Nk / np.sum(Nk) ## pi = Nk / N
xn = [X[lidx] for lidx in [[y==l] for l in self.labels]]
sum_x = np.vstack([np.sum(xn[f],axis=0) for f in range(len(self.labels))])
self.mu = 1/Nk * sum_x.T
for f in range(len(self.labels)):
xmu_f = xn[f]-self.mu[:,f].T
sigma_f = 1/Nk[f] * (xmu_f.T @ xmu_f)
#sigma_k.append(sigma_f)
self.sigma += sigma_f * self.pi[f]
def predict(self,X):
def y_lda(x,sigma,mu,pi):
'''
Compute yk of LDA using all parameters
'''
wk = np.linalg.inv(sigma) @ mu
wk0 = -1/2 * mu.T @ np.linalg.inv(sigma) @ mu + np.log(pi)
yk = x @ wk + wk0
return yk
yk = [y_lda(X,self.sigma,self.mu[:,f],self.pi[f]) for f in range(len(self.labels))]
deciding = np.argmax(yk,axis = 0) # biggest y for each X
y_hat = self.labels[deciding]
return y_hat
class QDA(BaseClassifier):
'''QDA Classifier'''
def __init__(self):
self.sigma = 0
self.pi = 0
self.mu = 0
self.labels = 0
def fit(self,X,y):
self.labels,Nk = np.unique(y, return_counts=True) ## Computing Nk
self.pi = Nk / np.sum(Nk) ## pi = Nk / N
xn = [X[lidx] for lidx in [[y==l] for l in self.labels]]
sum_x = np.vstack([np.sum(xn[f],axis=0) for f in range(len(self.labels))])
self.mu = 1/Nk * sum_x.T
sigma_k = []
for f in range(len(self.labels)):
xmu_f = xn[f]-self.mu[:,f].T
sigma_f = 1/Nk[f] * (xmu_f.T @ xmu_f)
sigma_k.append(sigma_f)
self.sigma =sigma_k #+= sigma_f * self.pi[f]
def predict(self,X):
def y_qda(X,sigmaa,mu,pi):
def quadra (X, sigma_inv):
return (X.T @ sigma_inv @ X)
y = -0.5* np.apply_along_axis(quadra, 1,X-mu, np.linalg.inv(sigmaa)) - 0.5 *np.log(np.linalg.det(sigmaa)) + np.log(pi)
return y
yk = [y_qda(X,self.sigma[f],self.mu[:,f],self.pi[f]) for f in range(len(self.labels))]
self.y = yk
deciding = np.argmax(yk,axis = 0) # biggest y for each X
y_hat = self.labels[deciding]
return y_hat