-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlinear_ucb.py
61 lines (52 loc) · 2.07 KB
/
linear_ucb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
from .randmax import randmax
from .base_mab import BaseMAB
class LinUCB(BaseMAB):
"""Linear UCB strategy
Parameters
----------
X : array of shape (K,d),
Feature matrix witk = Number of arms and d the number of dimensons
sigma : float,
aa
reg : float,
regularization parameters
delta ; float,
aa
threshold : None or function,
If None default threshold is selected.
"""
def __init__(self, X,sigma=0.5,reg=1,delta=0.05,threshold = None):
self.features = X
(self.nbArms,self.dimension) = np.shape(X)
self.reg = reg
self.clear()
self.delta = delta
self.sigma = sigma
if threshold == None :
self.threshold = lambda t,delta : self.sigma*np.sqrt(10*np.log(1+t/(self.nbArms*self.reg)))
else :
self.threshold = threshold
def clear(self):
self.t = 0
# initialize the design matrix, its inverse,
# the vector containing the sum of r_s*x_s and the least squares estimate
self.Design = self.reg*np.eye(self.dimension)
self.DesignInv = (1/self.reg)*np.eye(self.dimension)
self.Vector = np.zeros((self.dimension,1))
self.thetaLS = np.zeros((self.dimension,1)) # regularized least-squares estimate
def chooseArmToPlay(self):
# compute the vector of estimated means
muhat = (self.features @ self.thetaLS).flatten() + np.diag(np.sqrt(self.features @ self.DesignInv @ self.features.T))*self.threshold(self.t,self.delta)
# select the arm with largest estimated mean
return randmax(muhat)
def receiveReward(self,arm,reward):
self.t += 1
x = self.features[arm,:].reshape((self.dimension,1))
self.Design = self.Design + x @ x.T
self.Vector = self.Vector + reward*x
y = self.DesignInv @ x
# online update of the inverse of the design matrix
self.DesignInv -= (1/(1+x.T@y )) * y@y.T
# update of the least squares estimate
self.thetaLS = self.DesignInv @ self.Vector