-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfuzzycmeans.py
58 lines (47 loc) · 1.71 KB
/
fuzzycmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
from scipy.spatial.distance import cdist
from .base_unsupervized import BaseUnsupervized
class FuzzyCmeans(BaseUnsupervized):
'''Fuzzy C-means clustering algorithm
Parameters
----------
n_cluster : int,
number of cluster
p : float,
fuzzyness, >0
iter_max : int,
Number of maximum iterations
'''
def __init__(self,n_cluster,p=2,iter_max=100):
assert n_cluster>0, "n_cluster must be greater than 0"
assert p>0, "p must be greater than 0"
assert iter_max > 0, "iter_max must be greater than 0"
self.n_cluster = n_cluster
self.clusters = None
self.p = p
self.iter_max = iter_max
def _compute_weights(self,X):
dist = cdist(X,self.centroids)
dist = (1/dist)** (1/(self.p-1))
w = dist / dist.sum(axis=1).reshape(-1,1)
return w
def fit(self,X):
w = np.random.dirichlet(np.ones(self.n_cluster),size=X.shape[0]) # Init the weight matrix
w_old = w - 10
i=0
while i< self.iter_max and np.abs(w_old - w).sum() > 1e-6 :
w_old = w
# Update centroids
wp = w**self.p
self.centroids = wp.T @ X
self.centroids /= wp.sum(axis=0).reshape(-1,1)
# Update weights
w = self._compute_weights(X)
i+=1
def predict(self,X):
w = self._compute_weights(X)
cluster = np.zeros(X.shape[0])
for i in range(X.shape[0]):
# Assign points to a cluster given with probability given by the weight matrix
cluster[i] = np.random.choice(self.n_cluster,p=w[i])
return cluster