-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathGeneralized_Nash_Game.m
253 lines (223 loc) · 8.05 KB
/
Generalized_Nash_Game.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
function result = Generalized_Nash_Game( N )
%GENERALIZED_NASH_GAME Summary of this function goes here
% Detailed explanation goes here
if nargin<1
N=2;%There are 1000 EVs
end
%Generalized Nash Game Approach
%The competition among different EV users are converted into a potential
%game, i.e., a unique NE exits.
%1) Generate the integration time of each EVs
%The arrivial time
%The energy required
%The departure time
x1=0:0.01:7.5;
y1=1/1.2/pi./(1+5*(x1-7.3).^2);
x2=7.51:0.01:23.99;
y2=1/1.05/pi./(1+6*(x2-8.2).^2);
x=[x1,x2];
y=[y1,y2];
y_m_s=100*y/sum(y);%???
y_e_e=normpdf(x,18.2,0.8);
for i=1:24
Y_s(i)=sum(y_m_s((i-1)*100+1:i*100));
Y_e(i)=sum(y_e_e((i-1)*100+1:i*100));
end
clear x y;%????
Y_s=Y_s/100;%????
Y_e=Y_e/100;%????
%Generate the energy demand of each EV
T_shift=15;
T=24;
M_t=zeros(T,T);
for i=1:T
if i<=T-T_shift
M_t(i,i+T_shift)=1;
else
M_t(i,i-T+T_shift)=1;
end
end
Y_s=M_t*Y_s';
Y_e=M_t*Y_e';
Y_s_cum=cumsum(Y_s);
Y_e_cum=cumsum(Y_e);
Cr=30;%????
Pr=3;%??????
eff_c=0.9;%????
Delta_t=1;
%Generate the arrival curve and departure curve of each EV
%Generate each EV's information:arrival time, departure time, and energy
%required
index=1:T;
for i=1:N
Arrival_slot = max(index(rand>Y_e_cum));
if ~isempty(Arrival_slot)
EV(i).Arrival_time=Arrival_slot;
else
EV(i).Arrival_time=1;
end
Departure_slot = max(index(rand>Y_s_cum));
if ~isempty(Departure_slot)
EV(i).Departure_time=Departure_slot;
else
EV(i).Departure_time=1;
end
EV(i).Energy_required=2*gamrnd(5,3)*0.15/eff_c;
if EV(i).Departure_time<= EV(i).Arrival_time
EV(i).Departure_time= EV(i).Arrival_time;
end
if EV(i).Energy_required>=(EV(i).Departure_time-EV(i).Arrival_time)*Pr*eff_c*Delta_t
EV(i).Energy_required = (EV(i).Departure_time-EV(i).Arrival_time)*Pr*eff_c*Delta_t;
if EV(i).Energy_required == 0
EV(i).Energy_required = rand;%A small random value is assigned to this field.
end
end
EV(i).minimal_charging_duration = ceil((EV(i).Energy_required)/eff_c/Pr/Delta_t);
Profile = zeros(1,EV(i).minimal_charging_duration);
E0 = EV(i).Energy_required;
j = 1;
while E0>0 && j<=EV(i).minimal_charging_duration
Profile(j) = min(E0/eff_c/Delta_t, Pr);
E0 = E0 -Profile(j) *eff_c*Delta_t;
j = j + 1;
end
EV(i).maximal_charging_profile = Profile;
end
Arrival_curve=zeros(N,T);
Departure_curve=zeros(N,T);
for i=1:N
Arrival_curve(i, 1:EV(i).Arrival_time-1) = 0;
Arrival_curve(i, EV(i).Arrival_time:EV(i).Arrival_time+EV(i).minimal_charging_duration-1) = cumsum(EV(i).maximal_charging_profile);
Arrival_curve(i, EV(i).Arrival_time+EV(i).minimal_charging_duration : T) = sum(EV(i).maximal_charging_profile);
Departure_curve(i, 1:EV(i).Departure_time-EV(i).minimal_charging_duration) = 0;
Departure_curve(i, EV(i).Departure_time-EV(i).minimal_charging_duration+1:EV(i).Departure_time) = cumsum(sort(EV(i).maximal_charging_profile,'ascend'));
Departure_curve(i, EV(i).Departure_time+1:T) = sum(EV(i).maximal_charging_profile);
end
%Then it the charging plan of each EVs
Price=[0.353900000000000;0.353900000000000;0.353900000000000;0.353900000000000;0.353900000000000;0.353900000000000;0.353900000000000;1.22830000000000;1.22830000000000;1.22830000000000;1.22830000000000;0.778500000000000;0.778500000000000;0.778500000000000;0.778500000000000;0.778500000000000;0.778500000000000;1.33770000000000;1.33770000000000;1.33770000000000;1.33770000000000;0.778500000000000;0.778500000000000;0.353900000000000];
Price=M_t*Price;
%Deploy the objective functions
Price_b=ones(T,1)*0.01;
H = sparse([ ],[ ],[ ],T,N*T);
for i=1:T
H(i,i:T:N*T) = 1;
end
%By using the gurobi model
Lb=zeros(N*T,1);
Ub=zeros(N*T,1);
for i=1:N
Ub((i-1)*T+EV(i).Arrival_time:(i-1)*T+EV(i).Departure_time)=Pr;
end
A = [ ];
bu = [ ];
bl = [ ];
B = [ ];
N_lam = zeros(N,1);
for i=1:N
A(i).Cum = [ ];
for j=EV(i).Arrival_time:EV(i).Departure_time
A(i).Cum = [A(i).Cum ; sparse(ones(1,j-EV(i).Arrival_time+1),EV(i).Arrival_time:j,ones(1,j-EV(i).Arrival_time+1),1,T)];
end
A(i).Cum = [ A(i).Cum;-A(i).Cum];
B(i).b=[Arrival_curve(i,EV(i).Arrival_time:EV(i).Departure_time)';-Departure_curve(i,EV(i).Arrival_time:EV(i).Departure_time)'];
N_lam(i)=length(B(i).b);
% bu(i).u = [bu(i).u;Arrival_curve(i,EV(i).Arrival_time:EV(i).Departure_time)'];
% bl(i).l = [bl(i).l ;-Departure_curve(i,EV(i).Arrival_time:EV(i).Departure_time)'];
end
M=1e4;
N_lam_sum=sum(N_lam);
X = sdpvar(N*T,1);
N_lam=cumsum(N_lam);
lam_b=sdpvar(N_lam_sum,1);
lam=sdpvar(N*T,1);
lam_lb=sdpvar(N*T,1);
lam_ub=sdpvar(N*T,1);
B_lam_lb=binvar(N*T,1);
B_lam_ub=binvar(N*T,1);
B_lam_b=binvar(N_lam_sum,1);
B_lam=binvar(N*T,1);
F= [ ];
Power_limit=100;
for i = 1 : N
%The objective function for each player
F = F + [ X((i-1)*T+1:i*T) >= Lb((i-1)*T+1:i*T) ];
F = F + [ Lb((i-1)*T+1:i*T) - X((i-1)*T+1:i*T) >= -B_lam_lb((i-1)*T+1:i*T)*M ];
F = F + [ lam_lb((i-1)*T+1:i*T) >= 0 ];
F = F + [ lam_lb((i-1)*T+1:i*T) <=(1-B_lam_lb((i-1)*T+1:i*T))*M ];
%
F = F + [ Ub((i-1)*T+1:i*T) >= X((i-1)*T+1:i*T) ];
F = F + [ X((i-1)*T+1:i*T) -Ub((i-1)*T+1:i*T) >= -B_lam_ub((i-1)*T+1:i*T)*M ];
F = F + [ lam_ub((i-1)*T+1:i*T) >= 0 ];
F = F + [ lam_ub((i-1)*T+1:i*T) <=(1-B_lam_ub((i-1)*T+1:i*T))*M ];
F = F + [ A(i).Cum * X((i-1)*T+1:i*T) <= B(i).b];
F = F + [ H * X <= Power_limit ];
F = F + [ H * X - Power_limit >= -B_lam((i-1)*T+1:i*T)*M ];
F = F + [ lam((i-1)*T+1:i*T) >= 0 ];
F = F + [ lam((i-1)*T+1:i*T) <= (1-B_lam((i-1)*T+1:i*T))*M ];
if i == 1
F = F + [ A(i).Cum * X((i-1)*T+1:i*T) - B(i).b >= -B_lam_b(1:N_lam(1))*M];
F = F + [ lam_b(1:N_lam(1)) <=(1- B_lam_b(1:N_lam(1))) * M];
F = F + [ lam_b(1:N_lam(1)) >= 0];
else
F = F + [ A(i).Cum * X((i-1)*T+1:i*T) - B(i).b >= -B_lam_b(N_lam(i-1)+1:N_lam(i))*M];
F = F + [ lam_b(N_lam(i-1)+1:N_lam(i)) <=(1- B_lam_b(N_lam(i-1)+1:N_lam(i))) * M];
F = F + [ lam_b(N_lam(i-1)+1:N_lam(i)) >= 0];
end
%The KKT conditions
if i==1
F= F + [Price+diag(Price_b/2)*H*X +diag(Price_b/2)*X((i-1)*T+1:i*T) - lam_lb((i-1)*T+1:i*T) + lam_ub((i-1)*T+1:i*T) + A(i).Cum'*lam_b(1:N_lam(1)) + lam((i-1)*T+1:i*T) == 0];
else
F= F + [Price+diag(Price_b/2)*H*X +diag(Price_b/2)*X((i-1)*T+1:i*T) - lam_lb((i-1)*T+1:i*T) + lam_ub((i-1)*T+1:i*T) + A(i).Cum'*lam_b(N_lam(i-1)+1:N_lam(i)) +lam((i-1)*T+1:i*T) == 0];
end
end
option = sdpsettings('solver','gurobi');
sol = solvesdp(F,[ ],option);
X = double(X);
X_sum =H*X;
%%%%%%%%%%%%%%%%%The comparision part:%%%%%%%%%%%%%%%%%%%%%%
A_0 = [ ];
bu = [ ];
bl = [ ];
for i=1:N
for j=EV(i).Arrival_time:EV(i).Departure_time
A_0 = [A_0 ; sparse(ones(1,j-EV(i).Arrival_time+1),(i-1)*T+EV(i).Arrival_time:(i-1)*T+j,ones(1,j-EV(i).Arrival_time+1),1,N*T)];
end
bu = [bu;Arrival_curve(i,EV(i).Arrival_time:EV(i).Departure_time)'];
bl = [bl;-Departure_curve(i,EV(i).Arrival_time:EV(i).Departure_time)'];
end
A_0=[A_0;-A_0];
b=[bu;bl];
%The distributed algorithms
gap =inf;
Time_cost=0;
params.OutputFlag=0;
clear models
model.obj = H'*Price;
model.Q = sparse(H'*diag(Price_b/2)*H)+sparse(1:N*T,1:N*T,repmat(Price_b/4,N,1),N*T,N*T);
model.modelsense = 'min';
model.A = [A_0;H];
model.rhs = [b;Power_limit*ones(T,1)];
model.sense = repmat('<',length(b)+T,1);
model.lb=Lb;
model.ub=Ub;
%The constrain set
results = gurobi(model,params);
model_social=model;
model_social.Q = sparse(H'*diag(Price_b/2)*H);
results_social = gurobi(model,params);
X0=results.x;
X0_sum=H*X0;
%About the price information
Price_gng=Price+diag(Price_b)*X_sum;
Price_ng = Price + diag(Price_b)*X0_sum;
%Results analysis
plot(Price_gng)
hold on
plot(Price_ng,'r');
figure
plot(X_sum);
hold on
plot(X0_sum,'r')
% hold on
% plot(Price0,'r')
end