-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognizer.py
60 lines (47 loc) · 1.92 KB
/
face_recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import cv2
import numpy as np
import pickle
def recognize_faces():
print("Starting face recognition...")
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read(r"FaceRecognition\trainer\trainer.yml")
with open(r"FaceRecognition\trainer\labels.pickle", 'rb') as f:
labels_dict = pickle.load(f)
labels_dict = {v: k for k, v in labels_dict.items()} # Invert the dictionary
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
font = cv2.FONT_HERSHEY_SIMPLEX
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video width
cam.set(4, 480) # set video height
minW = 0.1 * cam.get(3)
minH = 0.1 * cam.get(4)
while True:
ret, img = cam.read()
if not ret:
print("Failed to capture image")
break
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(int(minW), int(minH)),
)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
id_, confidence = recognizer.predict(gray[y:y + h, x:x + w])
if confidence < 100:
name = labels_dict.get(id_, "You are Weird")
confidence_text = f" {round(100 - confidence)}%"
else:
name = "You are Weird"
confidence_text = f" {round(100 - confidence)}%"
cv2.putText(img, str(name), (x + 5, y - 5), font, 1, (255, 255, 255), 2)
cv2.putText(img, str(confidence_text), (x + 5, y + h - 5), font, 1, (255, 255, 0), 1)
cv2.imshow('camera', img)
k = cv2.waitKey(10) & 0xFF # Press 'ESC' for exiting video
if k == 27:
break
cam.release()
cv2.destroyAllWindows()
print("Face recognition finished.")