-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
63 lines (48 loc) · 1.39 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from flask import Flask, render_template, request
import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
import pickle
import string
app = Flask(__name__)
nltk.download('punkt')
nltk.download('stopwords')
ps = PorterStemmer()
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
def predict_spam(message):
# Preprocess
transformed_sms = transform_text(message)
# Vectorize
vector_input = tfidf.transform([transformed_sms])
# Predict
result = model.predict(vector_input)[0]
return result
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
if request.method == 'POST':
input_sms = request.form['message']
result = predict_spam(input_sms)
return render_template('index.html', result=result) # Pass 'result' to the template
if __name__ == '__main__':
tfidf = pickle.load(open('vectorizer.pkl', 'rb'))
model = pickle.load(open('model.pkl', 'rb'))
app.run(host='0.0.0.0')