-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathattack_utils.py
166 lines (160 loc) · 6.13 KB
/
attack_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
from data_utils import normalize
import numpy as np
from pysot.core.config import cfg
import cv2
'''This module is used to implement AA to template or search region'''
# def adv_attack_template(img_tensor,GAN):
# '''adversarial attack to template'''
# '''input: pytorch tensor(0,255) ---> output: pytorch tensor(0,255)'''
# '''step1: Normalization'''
# img_tensor = normalize(img_tensor)
# '''step2: pass to G'''
# with torch.no_grad():
# GAN.template_clean1 = img_tensor
# GAN.forward()
# img_adv = GAN.template_adv255
# return img_adv
def adv_attack_template(img_tensor, GAN):
'''adversarial attack to template'''
'''input: pytorch tensor(0,255) ---> output: pytorch tensor(0,255)'''
'''step1: Normalization'''
img_tensor = normalize(img_tensor)
'''step2: pass to G'''
with torch.no_grad():
GAN.template_clean1 = img_tensor
GAN.forward()
img_adv = GAN.template_adv255
return img_adv
def adv_attack_template_S(img_tensor, GAN, target_sz=(127,127)):
'''adversarial attack to template'''
'''input: pytorch tensor(0,255) ---> output: pytorch tensor(0,255)'''
'''step1: Normalization'''
img_tensor = normalize(img_tensor)
'''step2: pass to G'''
with torch.no_grad():
img_adv = GAN.transform(img_tensor,target_sz)
return img_adv
def adv_attack_search(img_tensor,GAN,search_sz=(255,255)):
'''adversarial attack to search region'''
'''input: pytorch tensor(0,255) ---> output: pytorch tensor(0,255)'''
'''step1: Normalization'''
img_tensor = normalize(img_tensor)
'''step2: pass to G'''
with torch.no_grad():
GAN.search_clean1 = img_tensor
GAN.num_search = img_tensor.size(0)
GAN.forward(search_sz)
img_adv = GAN.search_adv255
return img_adv
def adv_attack_search_new(img_tensor,GAN,search_sz=(255,255)):
'''adversarial attack to search region'''
'''input: pytorch tensor(0,255) ---> output: pytorch tensor(0,255)'''
'''step1: Normalization'''
img_tensor = normalize(img_tensor)
'''step2: pass to G'''
with torch.no_grad():
GAN.tensor_clean1 = img_tensor
GAN.num_search = img_tensor.size(0)
GAN.forward(search_sz)
img_adv = GAN.tensor_adv255
return img_adv
def get_subwindow(im, pos, model_sz, original_sz, avg_chans, type='tensor'):
"""
args:
im: bgr based image
pos: center position
model_sz: exemplar size
s_z: original size
avg_chans: channel average
"""
if isinstance(pos, float):
pos = [pos, pos]
sz = original_sz
im_sz = im.shape
c = (original_sz + 1) / 2
# context_xmin = round(pos[0] - c) # py2 and py3 round
context_xmin = np.floor(pos[0] - c + 0.5)
context_xmax = context_xmin + sz - 1
# context_ymin = round(pos[1] - c)
context_ymin = np.floor(pos[1] - c + 0.5)
context_ymax = context_ymin + sz - 1
left_pad = int(max(0., -context_xmin))
top_pad = int(max(0., -context_ymin))
right_pad = int(max(0., context_xmax - im_sz[1] + 1))
bottom_pad = int(max(0., context_ymax - im_sz[0] + 1))
context_xmin = context_xmin + left_pad
context_xmax = context_xmax + left_pad
context_ymin = context_ymin + top_pad
context_ymax = context_ymax + top_pad
r, c, k = im.shape
if any([top_pad, bottom_pad, left_pad, right_pad]):
size = (r + top_pad + bottom_pad, c + left_pad + right_pad, k)
te_im = np.zeros(size, np.uint8)
te_im[top_pad:top_pad + r, left_pad:left_pad + c, :] = im
if top_pad:
te_im[0:top_pad, left_pad:left_pad + c, :] = avg_chans
if bottom_pad:
te_im[r + top_pad:, left_pad:left_pad + c, :] = avg_chans
if left_pad:
te_im[:, 0:left_pad, :] = avg_chans
if right_pad:
te_im[:, c + left_pad:, :] = avg_chans
im_patch = te_im[int(context_ymin):int(context_ymax + 1),
int(context_xmin):int(context_xmax + 1), :]
else:
im_patch = im[int(context_ymin):int(context_ymax + 1),
int(context_xmin):int(context_xmax + 1), :]
if not np.array_equal(model_sz, original_sz):
im_patch = cv2.resize(im_patch, (model_sz, model_sz))
if type == 'tensor':
'''numpy array ---> torch tensor'''
# cv2.imwrite('./hahaha.jpg',im_patch)
im_patch = im_patch.transpose(2, 0, 1)#shape: (H,W,3)-->(3,H,W)
im_patch = im_patch[np.newaxis, :, :, :]#shape: (1,3,H,W)
im_patch = im_patch.astype(np.float32)
im_patch = torch.from_numpy(im_patch)
if cfg.CUDA:
im_patch = im_patch.cuda()
return im_patch
def multi_cropx(img, center_pos, size, channel_average, type='tensor'):
'''crop search region'''
'''pos:(N,2); size:(N,2)'''
w_z = size[:,0] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(size,axis=1)
h_z = size[:,1] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(size,axis=1)
s_z = np.sqrt(w_z * h_z)
# scale_z = cfg.TRACK.EXEMPLAR_SIZE / s_z
s_x = s_z * (cfg.TRACK.INSTANCE_SIZE / cfg.TRACK.EXEMPLAR_SIZE)
s_x = np.round(s_x)
'''2019.10.10 remove small bbox'''
mask = s_x > 5
s_x = s_x[mask]
center_pos = center_pos[mask]
num_box = center_pos.shape[0]
scale_x = 512 / s_x
if type == 'tensor':
x_crop = torch.zeros((num_box,3,512,512)).cuda()
elif type == 'array':
x_crop = np.zeros((num_box,512,512,3))
for i in range(s_x.shape[0]):
x_crop[i] = get_subwindow(img, center_pos[i],
512,
s_x[i], channel_average,type)
return x_crop, scale_x
def add_gauss_noise(input, sigma):
gauss_noise = torch.randn(input.size()) * (sigma * 255)
gauss_noise = gauss_noise.cuda()
output = input + gauss_noise
output = output.clamp(0, 255)
return output
def generate_impulse_mask(im_sz,prob):
rdn = torch.rand(im_sz)
mask0 = rdn < (prob / 2)
mask1 = rdn > (1 -prob / 2)
return mask0.cuda(), mask1.cuda()
def add_pulse_noise(input,prob):
mask0, mask1 = generate_impulse_mask(input.size(),prob)
output = input.clone()
output[mask0] = 0
output[mask1] = 255
return output