Skip to content

MarkDVerhagen/Functional_Form_Complexity

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code for Functional Form Complexity paper

This repository contains all code to generate the results for the paper 'Incorporating Machine Learning into Sociological Model-building'.

The repository contains code in five separate folders. Each folder contains reproduction material for an example used in the paper. The first folder base_simuls contains a script to generate a couple of non-linear functional forms. Each of the other four folders has the same script structure. First a 00_gen_data.R script used to wrangle the data. 01_superlearner.R estimates typical functoinal forms together with a SuperLearner containing various flexible models. 02_simul.R evaluates the out-of-sample fit metric of the best performing flexible model from the SuperLearner and the hypothesized model at different feature sets. 03_shap.py calculates Shapley values for the flexible model. 04_plot.R plots the results.

More detailed information for the housing, mincerian and ideology examples is enclosed in a folder-specific README.md.

├── base_simuls
│   ├── 00_gen.R
├── toy_example
│   ├── 00_gen_data.R
│   ├── 01_superlearner.R
│   ├── 02_simul.R
│   ├── 03_shap.py
│   ├── 04_plot.R
├── mincerian
│   ├── README.md
│   ├── 00_gen_data.R
│   ├── 01_superlearner.R
│   ├── 02_simul.R
│   ├── 03_shap.py
│   ├── 04_plot.R
├── housing
│   ├── README.md
│   ├── 00_gen_data.R
│   ├── 01_superlearner.R
│   ├── 02_simul.R
│   ├── 03_shap.py
│   ├── 04_plot.R
├── ideology
│   ├── README.md
│   ├── 00_gen_data.R
│   ├── 01_superlearner.R
│   ├── 02_simul.R
│   ├── 03_shap.py
│   ├── 04_plot.R

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published