-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_Manager.py
219 lines (185 loc) · 6.86 KB
/
data_Manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import urllib.request
import glob
import os
import numpy as np
from HyperParameters import HP
import tensorflow as tf
import keras
import keras.backend as K
from keras.callbacks import Callback
class Data():
# managing the data
def __init__(self, size = None):
'Initialization'
# first load the data
self.loadData(size)
self.dim = HP.input_dimention
self.batch_size = HP.batch_size
self.train = purify(self.train)
self.valid = purify(self.valid)
self.test = purify(self.test)
self.train = self.normalize(self.train)
self.valid = self.normalize(self.valid)
self.test = self.normalize(self.test)
self.train = np.array(self.train)
self.valid = np.array(self.valid)
self.test = np.array(self.test)
def loadData(self, size):
npzFile = np.load(HP.data_location, allow_pickle=True, encoding='latin1')
train = npzFile['train']
if size:
self.train = np.copy(train[:size])
else:
self.train = train
self.trainDimention = len(self.train)
self.test = npzFile['test']
self.valid = npzFile['valid']
self.validationDimention = len(self.valid)
return self.train, self.valid, self.test
def calculate_normalizing_scale_factor(self, strokes):
"""Calculate the normalizing factor explained in appendix of sketch-rnn."""
data = []
for i in range(len(strokes)):
if len(strokes[i]) > HP.max_seq_length:
continue
for j in range(len(strokes[i])):
data.append(strokes[i][j, 0])
data.append(strokes[i][j, 1])
data = np.array(data)
return np.std(data)
def normalize(self, strokes, scale_factor=None):
"""Normalize entire dataset (delta_x, delta_y) by the scaling factor."""
if scale_factor is None:
scale_factor = self.calculate_normalizing_scale_factor(strokes)
self.scale_factor = scale_factor
for i in range(len(strokes)):
strokes[i][:, 0:2] /= self.scale_factor
return strokes
def purify(strokes):
# We have to remove too long sequence
data = []
for seq in strokes:
if seq.shape[0] <= HP.max_seq_length:
len_seq = len(seq[:,0])
# pen state made by 3 state
new_seq = np.zeros((HP.max_seq_length,5))
new_seq[:len_seq,:2] = seq[:,:2]
new_seq[:len_seq-1,2] = 1-seq[:-1,2]
new_seq[:len_seq,3] = seq[:,2]
new_seq[len_seq:,4] = 1
data.append(new_seq)
return data
def to_normal_strokes(big_stroke):
"""Convert from stroke-5 format to stroke-3."""
l = 0
for i in range(len(big_stroke)):
if big_stroke[i, 4] > 0:
l = i
break
if l == 0:
l = len(big_stroke)
result = np.zeros((l, 3))
result[:, 0:2] = big_stroke[0:l, 0:2]
result[:, 2] = big_stroke[0:l, 3]
return result
""" # Normalize input Dx, Dy. We only remove the std as explained in the paper
def calculate_normalizing_scale_factor(self, strokes):
data = []
for element in strokes:
for point in element:
data.append(point[0])
data.append(point[1])
return np.std(np.array(data))
def normalize(self, strokes):
data = []
scale_factor = self.calculate_normalizing_scale_factor(strokes)
for seq in strokes:
seq[:, 0:1] /= scale_factor
data.append(seq)
return data
"""
# see https://keras.io/utils/ for more info
class DataGenerator(tf.keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, Data, shuffle=True, validation = False):
'Initialization'
self.Data = Data
self.validation = validation
if validation:
self.batch_size = len(Data)
else:
self.batch_size = HP.batch_size
self.dimention = len(Data)
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
if self.validation:
return 1
return int(np.floor(self.dimention/ self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
encoder_input = self.Data[indexes]
#if not self.validation:
#encoder_input = self.dataAugmentation(encoder_input)
decoder_ipnut = create_decoder_input(encoder_input)
"""
encoder_ipnut_short = []
for i in range(encoder_input.shape[0]):
for j in range(encoder_input.shape[1]):
if encoder_input[i,j,4] == 1:
encoder_ipnut_short.append(np.copy(encoder_input[i, :j, :]))
break
"""
return [encoder_input, decoder_ipnut], [encoder_input]
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(self.dimention)
if self.shuffle == True:
np.random.shuffle(self.indexes)
def dataAugmentation(self, strokes):
# generate random uniform between 0.9 to 1.1
randomx = np.random.rand()*(0.1)+1.
randomy = np.random.rand()*(0.1)+1.
# multiply the
strokes[:,:,0] = strokes[:,:,0]*randomx
strokes[:,:,1] = strokes[:,:,1]*randomy
return strokes
def create_decoder_input(sequence):
"""
function that, given an input sequence returns another sequence
for the decoder.
It shift the old sequence by one and insert on head the value
(0,0,1,0,0)
"""
decoder_ipnut = np.zeros(shape=sequence.shape)
# copy the value of the sequence
decoder_ipnut[:,1:] = sequence[:,:-1]
decoder_ipnut[:,0] = np.array([0,0,1,0,0])
return decoder_ipnut
class changing_KL_wheight(Callback):
def __init__(self, kl_weight, verbose = 1, mu_min = 0.01):
super(Callback, self).__init__()
self.kl_wheight = kl_weight
self.verbose = verbose
self.curr_mu = 0
def on_epoch_begin(self, epochs, logs = {}):
self.curr_mu = 1 - (1-HP.eta_min)*HP.R**epochs
New_wheight_kl = (self.curr_mu)*HP.wKL
# IF I USE TF-2.0 then I have to update the variable like that
self.kl_wheight.assign(New_wheight_kl)
#tf.keras.backend.set_value(self.kl_wheight, New_wheight_kl)
def on_train_batch_begin(self, epochs, logs = {}):
pass
def on_train_batch_end(self, epochs, logs = {}):
pass
def on_test_batch_begin(self, epochs, logs = {}):
pass
def on_test_batch_end(self, epochs, logs = {}):
pass
def on_test_begin(self, *arg, **karg):
pass
def on_test_end(self, *arg, **karg):
pass