-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocumentation.html
3845 lines (3423 loc) · 271 KB
/
documentation.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<!-- Licensed under the Apache 2.0 License -->
<link rel="stylesheet" type="text/css" href="_static/fonts/open-sans/stylesheet.css" />
<!-- Licensed under the SIL Open Font License -->
<link rel="stylesheet" type="text/css" href="_static/fonts/source-serif-pro/source-serif-pro.css" />
<link rel="stylesheet" type="text/css" href="_static/css/bootstrap.min.css" />
<link rel="stylesheet" type="text/css" href="_static/css/bootstrap-theme.min.css" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>XVOF Documentation — XVOF documentation</title>
<link rel="stylesheet" href="_static/guzzle.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/language_data.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Installation" href="installation.html" />
<link rel="prev" title="Code organisation" href="organisation.html" />
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="installation.html" title="Installation"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="organisation.html" title="Code organisation"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">XVOF documentation</a> »</li>
</ul>
</div>
<div class="container-wrapper">
<div id="mobile-toggle">
<a href="#"><span class="glyphicon glyphicon-align-justify" aria-hidden="true"></span></a>
</div>
<div id="left-column">
<div class="sphinxsidebar">
<div class="sidebar-block">
<div class="sidebar-wrapper">
<h2>Contents</h2>
<div class="sidebar-localtoc">
<ul>
<li><a class="reference internal" href="#">XVOF Documentation</a><ul>
<li><a class="reference internal" href="#module-cell">Cell</a></li>
<li><a class="reference internal" href="#module-cohesive_model">Cohesive Zone Model</a></li>
<li><a class="reference internal" href="#module-cohesive_model_unloading">Cohesive Zone Model : unloading options</a></li>
<li><a class="reference internal" href="#module-contact">Contact</a></li>
<li><a class="reference internal" href="#module-custom_functions">Customized Boundary Condition Functions</a></li>
<li><a class="reference internal" href="#module-data">Data</a></li>
<li><a class="reference internal" href="#module-discontinuity">Discontinuity</a></li>
<li><a class="reference internal" href="#module-equationsofstate">Equation Of State</a></li>
<li><a class="reference internal" href="#module-fields">Fields</a></li>
<li><a class="reference internal" href="#module-figure_manager">FigureManager (animation)</a></li>
<li><a class="reference internal" href="#module-mass_matrix">Mass Matrix</a></li>
<li><a class="reference internal" href="#module-mesh">Mesh</a></li>
<li><a class="reference internal" href="#module-node">Nodes</a></li>
<li><a class="reference internal" href="#module-output_manager">Outputs</a></li>
<li><a class="reference internal" href="#module-plasticitycriterion">Plasticity criterion</a></li>
<li><a class="reference internal" href="#module-rheology">Rheology</a></li>
<li><a class="reference internal" href="#module-rupturecriterion">Rupture criterion</a></li>
<li><a class="reference internal" href="#module-rupturetreatment">Rupture treatments</a></li>
<li><a class="reference internal" href="#module-solver">Solver</a></li>
<li><a class="reference internal" href="#module-utilities">Utilities</a></li>
</ul>
</li>
<li><a class="reference internal" href="#index-and-tables">Index and tables</a></li>
</ul>
</div>
</div>
</div>
<h4>Previous topic</h4>
<p class="topless"><a href="organisation.html"
title="previous chapter">Code organisation</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="installation.html"
title="next chapter">Installation</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/documentation.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div class="sidebar-block">
<div class="sidebar-wrapper">
<div id="main-search">
<form class="form-inline" action="search.html" method="GET" role="form">
<div class="input-group">
<input name="q" type="text" class="form-control" placeholder="Search...">
</div>
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</div>
</div>
<div id="right-column">
<div role="navigation" aria-label="breadcrumbs navigation">
<ol class="breadcrumb">
<li><a href="index.html">Docs</a></li>
<li>XVOF Documentation</li>
</ol>
</div>
<div class="document clearer body">
<div class="section" id="xvof-documentation">
<h1>XVOF Documentation<a class="headerlink" href="#xvof-documentation" title="Permalink to this headline">¶</a></h1>
<p>The time loop is executed in XtentedFiniteVolume.py. Mesh objects are responsible of the cells and nodes objects. So in principle, the entry point calls a mesh method which calls a cell or node method to update variables.
The following documentation specifies the role of all functions and modules in the code.</p>
<div class="section" id="module-cell">
<span id="cell"></span><h2>Cell<a class="headerlink" href="#module-cell" title="Permalink to this headline">¶</a></h2>
<p>Package for cell modules</p>
<dl class="py class">
<dt id="cell.Cell">
<em class="property">class </em><code class="descclassname">cell.</code><code class="descname">Cell</code><span class="sig-paren">(</span><em><span class="n">nbr_of_cells</span><span class="p">:</span> <span class="n">int</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell" title="Permalink to this definition">¶</a></dt>
<dd><p>A Cell object represents all the mesh cells.
Its different members are, for most of them, numpy 1D-array of nbr_of_cells length.</p>
<p>Memory layout is the same as in C/C++, i-e ‘row wise’.</p>
<dl class="py method">
<dt id="cell.Cell.compute_mass">
<em class="property">abstract </em><code class="descname">compute_mass</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.compute_mass" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute mass of the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.compute_new_density">
<em class="property">abstract </em><code class="descname">compute_new_density</code><span class="sig-paren">(</span><em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.compute_new_density" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the new density in the cells</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><strong>mask</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_of_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>)</em>) – boolean array to identify cells to be computed</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.compute_new_porosity">
<em class="property">abstract </em><code class="descname">compute_new_porosity</code><span class="sig-paren">(</span><em><span class="n">time_step</span></em>, <em><span class="n">porosity_model</span></em>, <em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.compute_new_porosity" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the new porosity according to the porosity model in XDATA
:param time_step: float
:param porosity_model: porosity model to compute
:type mask: np.array([nbr_of_cells, 1], dtype=bool)</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.compute_new_pressure">
<em class="property">abstract </em><code class="descname">compute_new_pressure</code><span class="sig-paren">(</span><em><span class="n">mask</span></em>, <em><span class="n">delta_t</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.compute_new_pressure" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the pressure in the cells at time t + dt</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.compute_new_pseudo">
<em class="property">abstract </em><code class="descname">compute_new_pseudo</code><span class="sig-paren">(</span><em><span class="n">time_step</span></em>, <em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.compute_new_pseudo" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the new value of artificial viscosity in the cells</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>time_step</strong> (<em>float</em>) – time step</li>
<li><strong>mask</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_of_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>)</em>) – boolean array to identify cells to be computed</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.compute_new_size">
<em class="property">abstract </em><code class="descname">compute_new_size</code><span class="sig-paren">(</span><em><span class="o">*</span><span class="n">args</span></em>, <em><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.compute_new_size" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the new size of the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.compute_new_time_step">
<em class="property">abstract </em><code class="descname">compute_new_time_step</code><span class="sig-paren">(</span><em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.compute_new_time_step" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the new value of critical time step in the cells</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><strong>mask</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_of_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>)</em>) – boolean array to identify cells to be computed</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.compute_size">
<em class="property">abstract </em><code class="descname">compute_size</code><span class="sig-paren">(</span><em><span class="n">topology</span></em>, <em><span class="n">node_coord</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.compute_size" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the size of the cells</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>topology</strong> (<a class="reference internal" href="#mesh.Topology" title="mesh.Topology"><em>Topology</em></a>) – topology of the mesh</li>
<li><strong>node_coord</strong> (<em>numpy.array</em><em>(</em><em>[</em><em>nbr_of_nodes</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=np.float64</em><em>, </em><em>order='C'</em><em>)</em>) – array of nodal coordinates</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.density">
<em class="property">property </em><code class="descname">density</code><a class="headerlink" href="#cell.Cell.density" title="Permalink to this definition">¶</a></dt>
<dd><p>Density in the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.dt">
<em class="property">property </em><code class="descname">dt</code><a class="headerlink" href="#cell.Cell.dt" title="Permalink to this definition">¶</a></dt>
<dd><p>Critical time step in cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.energy">
<em class="property">property </em><code class="descname">energy</code><a class="headerlink" href="#cell.Cell.energy" title="Permalink to this definition">¶</a></dt>
<dd><p>Internal energy in the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.fields_manager">
<em class="property">property </em><code class="descname">fields_manager</code><a class="headerlink" href="#cell.Cell.fields_manager" title="Permalink to this definition">¶</a></dt>
<dd><p>Return a copy of the field manager</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.get_coordinates">
<em class="property">classmethod </em><code class="descname">get_coordinates</code><span class="sig-paren">(</span><em><span class="n">nbr_cells</span></em>, <em><span class="n">topology</span></em>, <em><span class="n">x_coord</span></em>, <em><span class="n">y_coord</span><span class="o">=</span><span class="default_value">None</span></em>, <em><span class="n">z_coord</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.get_coordinates" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the vector of cell center coordinates at time t</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first simple">
<li><strong>nbr_cells</strong> – number of cells</li>
<li><strong>topology</strong> (<a class="reference internal" href="#mesh.Topology" title="mesh.Topology"><em>Topology</em></a>) – topology</li>
<li><strong>x_coord</strong> (<em>numpy.array</em><em>(</em><em>[</em><em>nbr_of_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=np.float64</em><em>, </em><em>order='C'</em><em>)</em>) – x coordinate vector</li>
<li><strong>y_coord</strong> (<em>numpy.array</em><em>(</em><em>[</em><em>nbr_of_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=np.float64</em><em>, </em><em>order='C'</em><em>)</em>) – y coordinate vector</li>
<li><strong>z_coord</strong> (<em>numpy.array</em><em>(</em><em>[</em><em>nbr_of_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=np.float64</em><em>, </em><em>order='C'</em><em>)</em>) – z coordinate vector</li>
</ul>
</dd>
<dt class="field-name">Returns</dt><dd class="field-body"><p class="first">the vector of cell center coordinates at time t</p>
</dd>
<dt class="field-name">Return type</dt><dd class="field-body"><p class="first last">numpy.array([nbr_of_cells, topology.dimension], dtype=np.float64, order=’C’)</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.increment_variables">
<code class="descname">increment_variables</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.increment_variables" title="Permalink to this definition">¶</a></dt>
<dd><p>Variables incrementation</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.initialize_cell_fields">
<code class="descname">initialize_cell_fields</code><span class="sig-paren">(</span><em><span class="n">mask_node_target</span></em>, <em><span class="n">mask_node_projectile</span></em>, <em><span class="n">topology</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.initialize_cell_fields" title="Permalink to this definition">¶</a></dt>
<dd><p>Initialisation of the cell fields and attributes of cell_in_target and cell_in_projectile</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>mask_node_target</strong> (<em>numpy.array</em><em>(</em><em>[</em><em>nbr_of_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>, </em><em>order='C'</em><em>)</em>) – bool array for nodes in the target</li>
<li><strong>mask_node_projectile</strong> (<em>numpy.array</em><em>(</em><em>[</em><em>nbr_of_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>, </em><em>order='C'</em><em>)</em>) – bool array for nodes in the target</li>
<li><strong>topology</strong> (<a class="reference internal" href="#mesh.Topology" title="mesh.Topology"><em>Topology</em></a>) – mesh connectivity object</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.mass">
<em class="property">property </em><code class="descname">mass</code><a class="headerlink" href="#cell.Cell.mass" title="Permalink to this definition">¶</a></dt>
<dd><p>Mass of the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.number_of_cells">
<em class="property">property </em><code class="descname">number_of_cells</code><a class="headerlink" href="#cell.Cell.number_of_cells" title="Permalink to this definition">¶</a></dt>
<dd><p>Number of cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.porosity">
<em class="property">property </em><code class="descname">porosity</code><a class="headerlink" href="#cell.Cell.porosity" title="Permalink to this definition">¶</a></dt>
<dd><p>Porosity</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.pressure">
<em class="property">property </em><code class="descname">pressure</code><a class="headerlink" href="#cell.Cell.pressure" title="Permalink to this definition">¶</a></dt>
<dd><p>Pressure in the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.print_infos">
<code class="descname">print_infos</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cell.Cell.print_infos" title="Permalink to this definition">¶</a></dt>
<dd><p>Print the fields in the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.pseudo">
<em class="property">property </em><code class="descname">pseudo</code><a class="headerlink" href="#cell.Cell.pseudo" title="Permalink to this definition">¶</a></dt>
<dd><p>Artificial viscosity in the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.shear_modulus">
<em class="property">property </em><code class="descname">shear_modulus</code><a class="headerlink" href="#cell.Cell.shear_modulus" title="Permalink to this definition">¶</a></dt>
<dd><p>Elastic shear modulus</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.size_t">
<em class="property">property </em><code class="descname">size_t</code><a class="headerlink" href="#cell.Cell.size_t" title="Permalink to this definition">¶</a></dt>
<dd><p>Size (length, area, volume) of the cells at time t</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.size_t_plus_dt">
<em class="property">property </em><code class="descname">size_t_plus_dt</code><a class="headerlink" href="#cell.Cell.size_t_plus_dt" title="Permalink to this definition">¶</a></dt>
<dd><p>Size (length, area, volume) of the cells at time t + dt</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.sound_velocity">
<em class="property">property </em><code class="descname">sound_velocity</code><a class="headerlink" href="#cell.Cell.sound_velocity" title="Permalink to this definition">¶</a></dt>
<dd><p>Sound velocity in the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.stress">
<em class="property">property </em><code class="descname">stress</code><a class="headerlink" href="#cell.Cell.stress" title="Permalink to this definition">¶</a></dt>
<dd><p>Cauchy stress tensor in the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.stress_xx">
<em class="property">property </em><code class="descname">stress_xx</code><a class="headerlink" href="#cell.Cell.stress_xx" title="Permalink to this definition">¶</a></dt>
<dd><p>Cauchy stress tensor in the cells. 1D : component xx</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.stress_yy">
<em class="property">property </em><code class="descname">stress_yy</code><a class="headerlink" href="#cell.Cell.stress_yy" title="Permalink to this definition">¶</a></dt>
<dd><p>Stress tensor field : sigma_yy</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.stress_zz">
<em class="property">property </em><code class="descname">stress_zz</code><a class="headerlink" href="#cell.Cell.stress_zz" title="Permalink to this definition">¶</a></dt>
<dd><p>Stress tensor field : sigma_zz</p>
</dd></dl>
<dl class="py method">
<dt id="cell.Cell.yield_stress">
<em class="property">property </em><code class="descname">yield_stress</code><a class="headerlink" href="#cell.Cell.yield_stress" title="Permalink to this definition">¶</a></dt>
<dd><p>Yield stress separating elastic from plastic behavior</p>
</dd></dl>
</dd></dl>
<dl class="py class">
<dt id="cell.OneDimensionCell">
<em class="property">class </em><code class="descclassname">cell.</code><code class="descname">OneDimensionCell</code><span class="sig-paren">(</span><em><span class="n">number_of_elements</span><span class="p">:</span> <span class="n">int</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell" title="Permalink to this definition">¶</a></dt>
<dd><p>A class for one dimension cells</p>
<dl class="py method">
<dt id="cell.OneDimensionCell.add_elastic_energy_method">
<em class="property">classmethod </em><code class="descname">add_elastic_energy_method</code><span class="sig-paren">(</span><em><span class="n">dt</span></em>, <em><span class="n">density_current</span></em>, <em><span class="n">density_new</span></em>, <em><span class="n">stress_dev_current</span></em>, <em><span class="n">stress_dev_new</span></em>, <em><span class="n">strain_rate_dev</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.add_elastic_energy_method" title="Permalink to this definition">¶</a></dt>
<dd><p>Take into account the additional term in internal energy due to elasticity</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>dt</strong> – time step</li>
<li><strong>density_current</strong> – density at time t</li>
<li><strong>density_new</strong> – density at time t+dt</li>
<li><strong>stress_dev_current</strong> – stress deviator at time t</li>
<li><strong>stress_dev_new</strong> – stress deviator at time t+dt</li>
<li><strong>strain_rate_dev</strong> – deviator of the strain rate tensor at time t+dt/2</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.apply_equation_of_state">
<em class="property">classmethod </em><code class="descname">apply_equation_of_state</code><span class="sig-paren">(</span><em><span class="n">cell</span><span class="p">:</span> <span class="n">xfv.src.cell.cell.Cell</span></em>, <em><span class="n">eos</span></em>, <em><span class="n">density</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">density_new</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">pressure</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">pressure_new</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">energy</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">energy_new</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">pseudo</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">cson_new</span><span class="p">:</span> <span class="n">numpy.array</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.apply_equation_of_state" title="Permalink to this definition">¶</a></dt>
<dd><p>Apply the equation of state to get the new internal energy, pressure and sound speed</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>cell</strong> – cell collection [in]</li>
<li><strong>eos</strong> – equation of state object [in]</li>
<li><strong>density</strong> – array of current density [in]</li>
<li><strong>density_new</strong> – array of new velocity [in]</li>
<li><strong>pressure</strong> – array of current pressure [in]</li>
<li><strong>pressure_new</strong> – array of new pressure [out]</li>
<li><strong>energy</strong> – array of current energy [in]</li>
<li><strong>energy_new</strong> – array of new energy [out]</li>
<li><strong>pseudo</strong> – array of artificial viscosity [in]</li>
<li><strong>cson_new</strong> – array of sound speed [out]</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.apply_plasticity">
<code class="descname">apply_plasticity</code><span class="sig-paren">(</span><em><span class="n">mask</span></em>, <em><span class="n">delta_t</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.apply_plasticity" title="Permalink to this definition">¶</a></dt>
<dd><p>Apply plasticity treatment if criterion is activated :
- compute yield stress
- tests plasticity criterion
- compute plastic strain rate for plastic cells</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>mask</strong> – boolean array to identify cells to be computed</li>
<li><strong>dt</strong> – time step</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.artificial_viscosity_field">
<em class="property">property </em><code class="descname">artificial_viscosity_field</code><a class="headerlink" href="#cell.OneDimensionCell.artificial_viscosity_field" title="Permalink to this definition">¶</a></dt>
<dd><p>Pseudoviscosity field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.classical">
<em class="property">property </em><code class="descname">classical</code><a class="headerlink" href="#cell.OneDimensionCell.classical" title="Permalink to this definition">¶</a></dt>
<dd><dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Returns</dt><dd class="field-body">boolean mask indicating which cells are classical</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_complete_stress_tensor">
<code class="descname">compute_complete_stress_tensor</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_complete_stress_tensor" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the Cauchy stress tensor (sum of pressure, artificial viscosity and
deviatoric stress)</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_deviator_strain_rate">
<em class="property">static </em><code class="descname">compute_deviator_strain_rate</code><span class="sig-paren">(</span><em><span class="n">dt</span></em>, <em><span class="n">topology</span></em>, <em><span class="n">node_coord_new</span></em>, <em><span class="n">node_velocity_new</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_deviator_strain_rate" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute strain rate deviator</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>mask</strong> – mask to select classical cells</li>
<li><strong>dt</strong> – time step</li>
<li><strong>topology</strong> – table of connectivity : link between cells and nodes id</li>
<li><strong>node_coord_new</strong> – array with new nodes coordinates</li>
<li><strong>node_velocity_new</strong> – array with new nodes velocities</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_deviatoric_stress_tensor">
<code class="descname">compute_deviatoric_stress_tensor</code><span class="sig-paren">(</span><em><span class="n">mask</span></em>, <em><span class="n">topology</span></em>, <em><span class="n">node_coord_new</span></em>, <em><span class="n">node_velocity_new</span></em>, <em><span class="n">delta_t</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_deviatoric_stress_tensor" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the deviatoric part of the stress tensor</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>mask</strong> – mask to select classical cells</li>
<li><strong>topology</strong> – table of connectivity : link between cells and nodes id</li>
<li><strong>node_coord_new</strong> – array with new nodes coordinates (time n+1)</li>
<li><strong>node_velocity_new</strong> – array with new nodes velocities (time n+1/2)</li>
<li><strong>delta_t</strong> – time step (staggered tn+1/2)</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_mass">
<code class="descname">compute_mass</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_mass" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute mass of the cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_new_density">
<code class="descname">compute_new_density</code><span class="sig-paren">(</span><em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_new_density" title="Permalink to this definition">¶</a></dt>
<dd><p>Computation of the density of the cells at time t+dt using mass conservation principle</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><strong>mask</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>)</em>) – array of boolean to identify classical cells</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_new_porosity">
<code class="descname">compute_new_porosity</code><span class="sig-paren">(</span><em><span class="n">delta_t</span><span class="p">:</span> <span class="n">float</span></em>, <em><span class="n">porosity_model</span></em>, <em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_new_porosity" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the new porosity according to the porosity model in XDATA</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>delta_t</strong> – model to compute the shear modulus</li>
<li><strong>porosity_model</strong> – porosity model to compute</li>
<li><strong>mask</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>)</em>) – mask to identify the cells to be computed</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_new_pressure">
<code class="descname">compute_new_pressure</code><span class="sig-paren">(</span><em><span class="n">mask</span></em>, <em><span class="n">dt</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_new_pressure" title="Permalink to this definition">¶</a></dt>
<dd><p>Computation of the set (internal energy, pressure, sound velocity) for v-e formulation</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_new_pseudo">
<code class="descname">compute_new_pseudo</code><span class="sig-paren">(</span><em><span class="n">delta_t</span><span class="p">:</span> <span class="n">float</span></em>, <em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_new_pseudo" title="Permalink to this definition">¶</a></dt>
<dd><p>Computation of cells artificial viscosity at time t+dt</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>delta_t</strong> – time step</li>
<li><strong>mask</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>)</em>) – boolean array to identify classical cells</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_new_size">
<code class="descname">compute_new_size</code><span class="sig-paren">(</span><em><span class="n">topology</span></em>, <em><span class="n">node_coord</span></em>, <em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_new_size" title="Permalink to this definition">¶</a></dt>
<dd><p>Computation of the cells length at time t+dt</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>topology</strong> (<a class="reference internal" href="#mesh.Topology1D" title="mesh.Topology1D"><em>Topology1D</em></a>) – table to link nodes and cells index</li>
<li><strong>node_coord</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_nodes</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=np.float64</em><em>)</em>) – array with the nodes coordinates at time t+dt</li>
<li><strong>mask</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>)</em>) – boolean array to identify classical cells</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_new_time_step">
<code class="descname">compute_new_time_step</code><span class="sig-paren">(</span><em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_new_time_step" title="Permalink to this definition">¶</a></dt>
<dd><p>Computation of the time step in the cells at time t+dt</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><strong>mask</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>)</em>) – boolean array to identify classical cells</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_pseudo">
<em class="property">classmethod </em><code class="descname">compute_pseudo</code><span class="sig-paren">(</span><em><span class="n">delta_t</span><span class="p">:</span> <span class="n">float</span></em>, <em><span class="n">rho_old</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">rho_new</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">size_new</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">cel_son</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">a_pseudo</span><span class="p">:</span> <span class="n">float</span></em>, <em><span class="n">b_pseudo</span><span class="p">:</span> <span class="n">float</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_pseudo" title="Permalink to this definition">¶</a></dt>
<dd><p>Computation of artificial viscosity</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>delta_t</strong> – time step</li>
<li><strong>rho_old</strong> – density at time t</li>
<li><strong>rho_new</strong> – density at time t+dt</li>
<li><strong>size_new</strong> – cell size at time t+dt</li>
<li><strong>cel_son</strong> – sound speed at time t</li>
<li><strong>a_pseudo</strong> – quadratic pseudo coefficient</li>
<li><strong>b_pseudo</strong> – linear pseudo coefficient</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_shear_modulus">
<code class="descname">compute_shear_modulus</code><span class="sig-paren">(</span><em><span class="n">shear_modulus_model</span></em>, <em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_shear_modulus" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the shear modulus G according to the constitutive elasticity model in XDATA</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>shear_modulus_model</strong> – model to compute the shear modulus</li>
<li><strong>mask</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>)</em>) – mask to identify the cells to be computed</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_size">
<code class="descname">compute_size</code><span class="sig-paren">(</span><em><span class="n">topology</span></em>, <em><span class="n">node_coord</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_size" title="Permalink to this definition">¶</a></dt>
<dd><p>Computation of the cells initial length</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>topology</strong> (<a class="reference internal" href="#mesh.Topology1D" title="mesh.Topology1D"><em>Topology1D</em></a>) – table to link nodes and cells index</li>
<li><strong>node_coord</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_nodes</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=np.float64</em><em>)</em>) – array with nodes coordinates</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_time_step">
<em class="property">classmethod </em><code class="descname">compute_time_step</code><span class="sig-paren">(</span><em><span class="n">cfl</span></em>, <em><span class="n">cfl_pseudo</span></em>, <em><span class="n">rho_old</span></em>, <em><span class="n">rho_new</span></em>, <em><span class="n">size_new</span></em>, <em><span class="n">sound_speed_new</span></em>, <em><span class="n">pseudo_old</span></em>, <em><span class="n">pseudo_new</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_time_step" title="Permalink to this definition">¶</a></dt>
<dd><p>Computation of the time step</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>cfl</strong> – nombre cfl</li>
<li><strong>cfl_pseudo</strong> – cfl linked to the shock treatment stability condition</li>
<li><strong>rho_old</strong> – density at time t</li>
<li><strong>rho_new</strong> – density at time t+dt</li>
<li><strong>size_new</strong> – size of element</li>
<li><strong>sound_speed_new</strong> – sound velocity at time t+dt</li>
<li><strong>pseudo_old</strong> – artificial viscosity at time t</li>
<li><strong>pseudo_new</strong> – artificial viscosity at timet+dt</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.compute_yield_stress">
<code class="descname">compute_yield_stress</code><span class="sig-paren">(</span><em><span class="n">yield_stress_model</span></em>, <em><span class="n">mask</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.compute_yield_stress" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the yield stress according to plasticity constitutive model in XDATA</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>yield_stress_model</strong> – model to compute the yield stress</li>
<li><strong>mask</strong> (<em>np.array</em><em>(</em><em>[</em><em>nbr_cells</em><em>, </em><em>1</em><em>]</em><em>, </em><em>dtype=bool</em><em>)</em>) – mask to identify the cells to be computed</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.density_field">
<em class="property">property </em><code class="descname">density_field</code><a class="headerlink" href="#cell.OneDimensionCell.density_field" title="Permalink to this definition">¶</a></dt>
<dd><p>Density field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.deviatoric_stress_current">
<em class="property">property </em><code class="descname">deviatoric_stress_current</code><a class="headerlink" href="#cell.OneDimensionCell.deviatoric_stress_current" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the current deviatoric stress tensor Sxx Syy Szz</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.deviatoric_stress_new">
<em class="property">property </em><code class="descname">deviatoric_stress_new</code><a class="headerlink" href="#cell.OneDimensionCell.deviatoric_stress_new" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the new deviatoric stress tensor Sxx Syy Szz</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.energy_field">
<em class="property">property </em><code class="descname">energy_field</code><a class="headerlink" href="#cell.OneDimensionCell.energy_field" title="Permalink to this definition">¶</a></dt>
<dd><p>Internal energy field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.enriched">
<em class="property">property </em><code class="descname">enriched</code><a class="headerlink" href="#cell.OneDimensionCell.enriched" title="Permalink to this definition">¶</a></dt>
<dd><dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Returns</dt><dd class="field-body">boolean mask indicating which cells are enriched</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.equivalent_plastic_strain_rate">
<em class="property">property </em><code class="descname">equivalent_plastic_strain_rate</code><a class="headerlink" href="#cell.OneDimensionCell.equivalent_plastic_strain_rate" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the equivalent plastic strain rate</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.general_method_deviator_strain_rate">
<em class="property">static </em><code class="descname">general_method_deviator_strain_rate</code><span class="sig-paren">(</span><em><span class="n">dt</span></em>, <em><span class="n">x_new</span></em>, <em><span class="n">u_new</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.general_method_deviator_strain_rate" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the deviator of strain rate tensor (defined at the center of the cell)
from the coordinates and velocities interpolated at the center of the cell</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>dt</strong> – time step (float)</li>
<li><strong>x_new</strong> – coordinates array at time n+1 of the left and right nodes of each cell.</li>
<li><strong>u_new</strong> – velocity array at time n+1/2 of the left and right nodes of each cell</li>
</ul>
</dd>
</dl>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>x_new, u_new shape is (size(mask), 2)</p>
<ul class="last simple">
<li>x_new is an array : array([coord_node_left, coord_node_right] * nbr_cells in the mask)</li>
<li>u_new is an array : array([velocity_node_left, velocity_node_right] * nbr_cells in the mask)</li>
</ul>
</div>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.impose_pressure">
<code class="descname">impose_pressure</code><span class="sig-paren">(</span><em><span class="n">ind_cell</span><span class="p">:</span> <span class="n">int</span></em>, <em><span class="n">pressure</span><span class="p">:</span> <span class="n">float</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.impose_pressure" title="Permalink to this definition">¶</a></dt>
<dd><p>Pressure imposition</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>ind_cell</strong> – index of the cells</li>
<li><strong>pressure</strong> – pressure value to be imposed</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.increment_variables">
<code class="descname">increment_variables</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionCell.increment_variables" title="Permalink to this definition">¶</a></dt>
<dd><p>Increment cells variables from one iteration to another</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.plastic_strain_rate">
<em class="property">property </em><code class="descname">plastic_strain_rate</code><a class="headerlink" href="#cell.OneDimensionCell.plastic_strain_rate" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the current plastic stain rate tensor Dp_xx Dp_yy Dp_zz</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.porosity_field">
<em class="property">property </em><code class="descname">porosity_field</code><a class="headerlink" href="#cell.OneDimensionCell.porosity_field" title="Permalink to this definition">¶</a></dt>
<dd><p>Porosity field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionCell.pressure_field">
<em class="property">property </em><code class="descname">pressure_field</code><a class="headerlink" href="#cell.OneDimensionCell.pressure_field" title="Permalink to this definition">¶</a></dt>
<dd><p>Pressure field</p>
</dd></dl>
</dd></dl>
<dl class="py class">
<dt id="cell.OneDimensionHansboEnrichedCell">
<em class="property">class </em><code class="descclassname">cell.</code><code class="descname">OneDimensionHansboEnrichedCell</code><span class="sig-paren">(</span><em><span class="n">n_cells</span><span class="p">:</span> <span class="n">int</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell" title="Permalink to this definition">¶</a></dt>
<dd><p>A collection of 1d enriched elements. Treatment for Hansbo enrichment</p>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.apply_plasticity_enr">
<code class="descname">apply_plasticity_enr</code><span class="sig-paren">(</span><em><span class="n">mask_mesh</span></em>, <em><span class="n">delta_t</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.apply_plasticity_enr" title="Permalink to this definition">¶</a></dt>
<dd><p>Apply plasticity treatment if criterion is activated :</p>
<ul class="simple">
<li>compute yield stress</li>
<li>tests plasticity criterion</li>
<li>compute plastic strain rate for plastic cells</li>
</ul>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.artificial_viscosity_field">
<em class="property">property </em><code class="descname">artificial_viscosity_field</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.artificial_viscosity_field" title="Permalink to this definition">¶</a></dt>
<dd><dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Returns</dt><dd class="field-body">artificial viscosity field</dd>
<dt class="field-name">Return type</dt><dd class="field-body">np.array</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.cell_enr_increment">
<code class="descname">cell_enr_increment</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.cell_enr_increment" title="Permalink to this definition">¶</a></dt>
<dd><p>Increment the enriched cell variables</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.classical">
<em class="property">property </em><code class="descname">classical</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.classical" title="Permalink to this definition">¶</a></dt>
<dd><dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Returns</dt><dd class="field-body">a mask where True indicate a classical cell</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_discontinuity_borders_velocity">
<em class="property">classmethod </em><code class="descname">compute_discontinuity_borders_velocity</code><span class="sig-paren">(</span><em><span class="n">disc</span></em>, <em><span class="n">node_velocity</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_discontinuity_borders_velocity" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the velocities of points at the discontinuity border</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first simple">
<li><strong>disc</strong> – Discontinuity to be considered</li>
<li><strong>node_velocity</strong> – array with nodes velocity</li>
</ul>
</dd>
<dt class="field-name">Return ug</dt><dd class="field-body"><p class="first">velocity of the discontinuity left boundary</p>
</dd>
<dt class="field-name">Return ud</dt><dd class="field-body"><p class="first last">velocity of the discontinuity right boundary</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_enriched_deviatoric_strain_rate">
<code class="descname">compute_enriched_deviatoric_strain_rate</code><span class="sig-paren">(</span><em><span class="n">dt</span><span class="p">:</span> <span class="n">float</span></em>, <em><span class="n">node_coord_new</span><span class="p">:</span> <span class="n">numpy.array</span></em>, <em><span class="n">node_velocity_new</span><span class="p">:</span> <span class="n">numpy.array</span></em><span class="sig-paren">)</span> → None<a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_enriched_deviatoric_strain_rate" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the deviatoric strain rate for enriched cells</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>dt</strong> – time step</li>
<li><strong>node_coord_new</strong> – array, new nodes coordinates</li>
<li><strong>node_velocity_new</strong> – array, new nodes velocity</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_enriched_deviatoric_stress_tensor">
<code class="descname">compute_enriched_deviatoric_stress_tensor</code><span class="sig-paren">(</span><em><span class="n">node_coord_new</span></em>, <em><span class="n">node_velocity_new</span></em>, <em><span class="n">delta_t</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_enriched_deviatoric_stress_tensor" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the deviatoric part of the stress tensor</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>node_coord_new</strong> – array, new nodes coordinates</li>
<li><strong>node_velocity_new</strong> – array, new nodes velocity</li>
<li><strong>delta_t</strong> – float, time step</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_enriched_elements_new_density">
<code class="descname">compute_enriched_elements_new_density</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_enriched_elements_new_density" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the new densities for left and right parts of the ruptured element
(from mass conservation equation)</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_enriched_elements_new_part_size">
<code class="descname">compute_enriched_elements_new_part_size</code><span class="sig-paren">(</span><em><span class="n">time_step</span></em>, <em><span class="n">node_velocity</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_enriched_elements_new_part_size" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the new size of each ruptured element part (left size and right size)</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><ul class="first last simple">
<li><strong>time_step</strong> – time step</li>
<li><strong>node_velocity</strong> – array, node velocities</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_enriched_elements_new_pressure">
<code class="descname">compute_enriched_elements_new_pressure</code><span class="sig-paren">(</span><em><span class="n">delta_t</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_enriched_elements_new_pressure" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute pressure, internal energy and sound velocity in left and right parts of
the enriched elements</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><strong>delta_t</strong> – time step</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_enriched_elements_new_pseudo">
<code class="descname">compute_enriched_elements_new_pseudo</code><span class="sig-paren">(</span><em><span class="n">delta_t</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_enriched_elements_new_pseudo" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the new artificial viscosity of the enriched_cells</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><strong>delta_t</strong> – time_step</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_enriched_elements_new_time_step">
<code class="descname">compute_enriched_elements_new_time_step</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_enriched_elements_new_time_step" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the new local time step.
The calculation is equivalent to a remeshing time step and thus underestimates the
time step for the enriched cells</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_enriched_shear_modulus">
<code class="descname">compute_enriched_shear_modulus</code><span class="sig-paren">(</span><em><span class="n">shear_modulus_model</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_enriched_shear_modulus" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the shear modulus for ruptured cell</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><strong>shear_modulus_model</strong> – model to compute the shear modulus</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_enriched_stress_tensor">
<code class="descname">compute_enriched_stress_tensor</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_enriched_stress_tensor" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the complete enriched stress tensor : sigma = -(p+q) I + S</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.compute_enriched_yield_stress">
<code class="descname">compute_enriched_yield_stress</code><span class="sig-paren">(</span><em><span class="n">yield_stress_model</span></em><span class="sig-paren">)</span><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.compute_enriched_yield_stress" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the yield stress for ruptured cells</p>
<dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Parameters</dt><dd class="field-body"><strong>yield_stress_model</strong> – model to compute the yield stress</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.density_field">
<em class="property">property </em><code class="descname">density_field</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.density_field" title="Permalink to this definition">¶</a></dt>
<dd><dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Returns</dt><dd class="field-body">density field</dd>
<dt class="field-name">Return type</dt><dd class="field-body">np.array</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.deviatoric_stress_field">
<em class="property">property </em><code class="descname">deviatoric_stress_field</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.deviatoric_stress_field" title="Permalink to this definition">¶</a></dt>
<dd><dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Returns</dt><dd class="field-body">(deviateur de sigma)_xx field</dd>
<dt class="field-name">Return type</dt><dd class="field-body">np.array</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.energy_field">
<em class="property">property </em><code class="descname">energy_field</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.energy_field" title="Permalink to this definition">¶</a></dt>
<dd><dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Returns</dt><dd class="field-body">energy field</dd>
<dt class="field-name">Return type</dt><dd class="field-body">np.array</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_artificial_viscosity">
<em class="property">property </em><code class="descname">enr_artificial_viscosity</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_artificial_viscosity" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell artificial viscosity field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_density">
<em class="property">property </em><code class="descname">enr_density</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_density" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell density field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_deviatoric_strain_rate">
<em class="property">property </em><code class="descname">enr_deviatoric_strain_rate</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_deviatoric_strain_rate" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell deviatoric strain rate at time t</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_deviatoric_stress_current">
<em class="property">property </em><code class="descname">enr_deviatoric_stress_current</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_deviatoric_stress_current" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell deviatoric stress at time t</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_deviatoric_stress_new">
<em class="property">property </em><code class="descname">enr_deviatoric_stress_new</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_deviatoric_stress_new" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell deviatoric stress at time t+dt</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_energy">
<em class="property">property </em><code class="descname">enr_energy</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_energy" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell internal energy field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_equivalent_plastic_strain_rate">
<em class="property">property </em><code class="descname">enr_equivalent_plastic_strain_rate</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_equivalent_plastic_strain_rate" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell equivalent plastic strain rate at time t</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_plastic_strain_rate">
<em class="property">property </em><code class="descname">enr_plastic_strain_rate</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_plastic_strain_rate" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell plastic strain rate tensor at time t</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_pressure">
<em class="property">property </em><code class="descname">enr_pressure</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_pressure" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell pressure field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_shear_modulus">
<em class="property">property </em><code class="descname">enr_shear_modulus</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_shear_modulus" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell shear modulus field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_sound_velocity">
<em class="property">property </em><code class="descname">enr_sound_velocity</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_sound_velocity" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell sound speed field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_stress">
<em class="property">property </em><code class="descname">enr_stress</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_stress" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell stress at time t</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_stress_xx">
<em class="property">property </em><code class="descname">enr_stress_xx</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_stress_xx" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell stress at time t</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enr_yield_stress">
<em class="property">property </em><code class="descname">enr_yield_stress</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enr_yield_stress" title="Permalink to this definition">¶</a></dt>
<dd><p>Accessor on the right part of cracked cell yield stress field</p>
</dd></dl>
<dl class="py method">
<dt id="cell.OneDimensionHansboEnrichedCell.enriched">
<em class="property">property </em><code class="descname">enriched</code><a class="headerlink" href="#cell.OneDimensionHansboEnrichedCell.enriched" title="Permalink to this definition">¶</a></dt>
<dd><dl class="docutils field-list" frame="void" rules="none">
<dt class="field-name">Returns</dt><dd class="field-body">a mask where True indicates an enrich cell</dd>
</dl>