-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSuppFig6_Volcano_plot.R
75 lines (59 loc) · 2.29 KB
/
SuppFig6_Volcano_plot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
###########################
#### scDVP Figure Code ####
###########################
#### -- Supplementary Figure S6 -- ####
## -- Prepare Workspace
cat("\014")
rm(list=ls())
## Read relevant data
load("../output/variables/d.R")
load("../output/Variables/meta_distances.R")
load("../output/Variables/SA_incl_all.R")
load("../output/Variables/meta_pg.R")
## Binning
classes = 20
data.frame(cell_ID = meta_distances$cell_ID, ratio = meta_distances$ratio) %>%
mutate(range = cut_interval(-ratio, n = classes)) -> meta_distances_bin
SA_incl_heps <- unique(d$cell_ID)
meta_distances_bin %>%
filter(cell_ID %in% SA_incl_all) %>%
distinct(range) %>%
arrange(range) %>%
mutate(bin = c(1:classes)) %>%
right_join(meta_distances_bin) %>%
mutate(bin = abs(bin - (classes + 1))) -> meta_distances_bin
#filter(bin %in% c(1,4)) -> meta_distances_bin
## Limma
d %>%
filter(cell_ID %in% meta_distances_bin$cell_ID) %>%
drop_na(int_core) %>%
group_by(Protein) %>%
summarise(completeness = n()/length(meta_distances_bin$cell_ID)) %>%
filter(completeness >= 0.5) %>%
pull(Protein) -> proteome_50_heps
d %>%
filter(Protein %in% proteome_50_heps) %>%
filter(cell_ID %in% meta_distances_bin$cell_ID) %>%
dplyr::select(cell_ID, int_core, Protein) %>%
spread(cell_ID, int_core) %>%
arrange(Protein) %>%
column_to_rownames("Protein") -> d_wide_50
design <- model.matrix(~(meta_distances_bin %>% column_to_rownames("cell_ID"))[colnames(d_wide_50),]$bin)
fit <- lmFit(d_wide_50, design)
fit <- eBayes(fit)
limma <- topTable(fit, number = Inf, confint = TRUE, coef = 2, adjust.method = "fdr") %>%
rownames_to_column("Protein") %>%
left_join(meta_pg) %>%
arrange(logFC) %>%
mutate(FC_rank = c(1:nrow(.))) %>%
mutate(significant = adj.P.Val < 0.05)
## Volcano plotting
ggplot(data = limma, aes(x = logFC, y = -log10(adj.P.Val), fill = -log10(adj.P.Val)))+
geom_point(alpha = 0.8, pch = 21)+
theme_classic()+
scale_fill_viridis(option = "inferno")+
#geom_hline(yintercept = -log10(0.05), lty = "dotted")+
geom_vline(xintercept = 0, lty = "dotted") +
geom_text_repel(data = limma %>% slice_min(adj.P.Val, n = 40),
aes(x = logFC, y = -log10(adj.P.Val), label = Symbol), color = "black") -> plot_volcano
ggsave(plot_volcano, file = "../output/Figures/Volcano.pdf", width = 7, height = 6)