-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSuppFig5_PCA_reductive.R
196 lines (164 loc) · 6.63 KB
/
SuppFig5_PCA_reductive.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
###########################
#### scDVP Figure Code ####
###########################
#### -- Supplementary Figure S5 -- ####
## -- Prepare Workspace
cat("\014")
rm(list=ls())
## Read relevant data
load("../output/variables/d.R")
load("../output/variables/meta_distances.R")
## Reductive PCA
d %>%
dplyr::select(Protein, int_core, cell_ID) %>%
spread(cell_ID, int_core) %>%
filter(complete.cases(.)) %>%
column_to_rownames("Protein") -> d_complete_heps
meta_heps <- meta_distances %>%
filter(cell_ID %in% colnames(d_complete_heps)) %>%
arrange(ratio) %>%
column_to_rownames("cell_ID")
## Calculate all divisors of length of meta_heps
num <- nrow(meta_heps)
divisors <- c()
# Find possible divisors
for (i in 1:num) {
if (num %% i == 0) {
divisors <- c(divisors, i)
}
}
#divisors <- divisors[seq(1, length(divisors), 2)]
# Define a function that assigns repetitive elements
concatenate <- function(num, groups){
y = rep(c(1:(num/groups)), each = groups)
return(y)
}
## Add columns to metadata that allow concatenation
for(i in divisors){
meta_heps %>%
mutate(new_var = concatenate(num, i), !!paste0("1:", formatC(i, width = 3, flag = "0"), sep = "") := new_var) -> meta_heps
}
d %>%
dplyr::select(Protein, int_core, cell_ID) %>%
spread(cell_ID, int_core) %>%
filter(complete.cases(.)) %>%
gather(cell_ID, int, !Protein) %>%
left_join(meta_heps %>% rownames_to_column("cell_ID")) %>%
drop_na(ratio) %>%
gather(concat, counter, grep("^1:", names(.), value = TRUE)) -> d_concat
d_concat %>%
group_by(concat, counter, Protein) %>%
summarise(int_concat = log2(median(2^int))) %>%
mutate(sample = paste(concat, counter, sep = "_")) -> d_concat_summary
as.data.frame(d_concat_summary) %>%
dplyr::select(sample, Protein, int_concat) %>%
spread(sample, int_concat) %>%
column_to_rownames("Protein") -> d_concat_summary_wide
d_concat_summary %>%
distinct(sample) %>%
column_to_rownames("sample") -> d_concat_meta
## Plotting functions
p_concat <- PCAtools::pca(d_concat_summary_wide[,rownames(d_concat_meta)], metadata = d_concat_meta, removeVar = 0.1)
#
# PCAtools::biplot(p_concat,
# colby = 'concat',
# hline = 0, vline = 0,
# labSize = 3,
# lab = NA,
# encircle = F,
# encircleFill = F,
# showLoadings = F,
# legendPosition = 'right',
# alpha = 0.6)+
# scale_color_manual(values = viridis(length(divisors))) +
# theme_classic()-> plot_pca_loadings
## Plot drop in IQR depending on PC
p_concat[["rotated"]][,1:5] %>%
rownames_to_column("sample") %>%
left_join(d_concat_meta %>% rownames_to_column("sample")) %>%
gather(component, value, grep("^PC", names(.), value = T)) %>%
group_by(concat, component) %>%
summarise(q1 = quantile(value, 0.25), q3 = quantile(value, 0.75), iqr = abs(q3 - q1)) %>%
ggplot(aes(x = concat, y = iqr, color = component, group = component)) +
geom_line()+
geom_point()+
theme_classic()+
scale_color_manual(values = viridis(5)) -> p_iqr
p_concat[["rotated"]][,1:3] %>%
rownames_to_column("sample") %>%
left_join(d_concat_meta %>% rownames_to_column("sample")) %>%
gather(component, value, grep("^PC", names(.), value = T)) %>%
ggplot(aes(x = concat, y = value, fill = component)) +
geom_hline(yintercept = 0) +
geom_boxplot()+
scale_fill_manual(values = viridis(5)[2:4])+
theme_classic() -> p_box_pc
## Plot PCA depending on concatenation
p_concat[["rotated"]][,1:5] %>%
rownames_to_column("sample") %>%
left_join(d_concat_meta %>% rownames_to_column("sample")) %>%
gather(component, value, grep("^PC", names(.), value = T)) %>%
group_by(concat) %>%
mutate(is_min = counter == 1, is_max = counter == max(counter)) %>%
spread(component, value) -> p_reductive
# Calculate maximum distance lines
for(i in unique(p_reductive$concat)){
p_concat[["rotated"]][,1:2] %>%
rownames_to_column("sample") %>%
left_join(d_concat_meta %>% rownames_to_column("sample")) %>%
filter(concat == i) %>%
dplyr::select(PC1, PC2) -> points
dist_points <- as.matrix(dist(points))
max_dist <- max(dist_points)
max_pair <- which(dist_points == max_dist, arr.ind = TRUE)
point1 <- points[max_pair[1], ]
point2 <- points[max_pair[2], ]
if(i == unique(p_reductive$concat)[1]){
p_reductive_lines <- data.frame(rbind(point1, point2), i)
} else {
p_reductive_lines <- rbind(p_reductive_lines, data.frame(rbind(point1, point2), i))
}
}
# Show in PCA
ggplot(p_reductive)+
geom_hline(yintercept = 0, lty = "dotted")+
geom_vline(xintercept = 0, lty = "dotted")+
geom_point(aes(x = PC1, y = PC2, fill = concat, size = concat, alpha = concat), pch = 21, color = "black")+
scale_fill_manual(values = viridis(length(divisors), option = "viridis")[length(divisors):1])+
scale_alpha_manual(values = seq(0.3, 1, by = 0.5/length(divisors)))+
theme_classic()+
#geom_line(data = p_reductive_lines, aes(x = PC1, y = PC2, group = i), lty = "dashed")+
#geom_point(data = p_reductive_lines, aes(x = PC1, y = PC2, fill = i), pch = 21, color = "black", size = 5, alpha = 1)+
facet_wrap(.~concat) -> p_reductive
# Extract variance explained
for(i in unique(d_concat_summary$concat)){
if(i == max(unique(d_concat_summary$concat))) break
as.data.frame(d_concat_summary) %>%
filter(concat == i) %>%
dplyr::select(sample, Protein, int_concat) %>%
spread(sample, int_concat) %>%
column_to_rownames("Protein") -> d_concat_summary_wide
d_concat_summary %>%
filter(concat == i) %>%
distinct(sample) %>%
column_to_rownames("sample") -> d_concat_meta
## Plotting functions
p_concat <- PCAtools::pca(d_concat_summary_wide[,rownames(d_concat_meta)], metadata = d_concat_meta, removeVar = 0.1)
if(i == unique(d_concat_summary$concat)[1]){
d_variance <- data.frame(variance = p_concat$variance, concat = i) %>%
rownames_to_column("PC")
} else{
d_variance <- rbind(d_variance, data.frame(variance = p_concat$variance, concat = i) %>%
rownames_to_column("PC"))
}
}
ggplot(data = d_variance %>% filter(PC %in% c("PC1", "PC2", "PC3", "PC4")), aes(x = concat, y = variance, group = PC, color = PC))+
geom_line()+
geom_point()+
theme_bw()+
scale_color_manual(values = viridis(6)[2:5])+
theme_classic() -> p_variance
ggsave(p_variance, file = "../output/Figures/Reductive_Variance.pdf", width = 5, height = 5)
ggsave(p_reductive, file = "../output/Figures/Reductive_PCA.pdf", width = 5, height = 5)
ggsave(p_iqr, file = "../output/Figures/Reductive_IQR.pdf", width = 5, height = 5)
ggsave(p_box_pc, file = "../output/Figures/Reductive_Boxplot.pdf", width = 7, height = 5)