-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFig3_OXPHOS.R
111 lines (92 loc) · 3.54 KB
/
Fig3_OXPHOS.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
###########################
#### scDVP Figure Code ####
###########################
#### -- Figure 3H -- ####
## -- Prepare Workspace
cat("\014")
rm(list=ls())
## Read relevant data
load("../output/variables/d.R")
load("../output/Variables/meta_distances.R")
load("../output/Variables/SA_incl_all.R")
load("../output/Variables/meta_pg.R")
read_csv("../data/external/Mouse.MitoCarta3.0.csv") -> mitocarta
# Binning
classes = 20
## Subset to 90% complete proteins
SA_incl_heps <- d %>%
filter(cell_ID %in% meta_distances$cell_ID) %>%
distinct(cell_ID) %>%
pull(cell_ID)
data.frame(cell_ID = meta_distances$cell_ID, ratio = meta_distances$ratio) %>%
mutate(range = cut_interval(ratio, n = classes)) -> meta_distances_bin
meta_distances_bin %>%
filter(cell_ID %in% SA_incl_heps) %>%
distinct(range) %>%
arrange(range) %>%
mutate(bin = c(1:classes)) %>%
right_join(meta_distances_bin) %>%
filter(cell_ID %in% SA_incl_heps) -> meta_distances_bin
## OXPHOS
mitocarta %>%
filter(grepl("^OXPHOS > Complex|^Metabolism > Lipid metabolism", MitoCarta3.0_MitoPathways)) %>%
filter(grepl("subunits|Lipid", MitoCarta3.0_MitoPathways)) %>%
mutate(Complex = str_replace_all(str_replace_all(MitoCarta3.0_MitoPathways, "^OXPHOS > ", ""), " > .*", "")) %>%
dplyr::rename(ENSEMBL = EnsemblGeneID) %>%
dplyr::select(ENSEMBL, Complex) -> mitocarta_oxphos
d %>%
dplyr::select(cell_ID, ENSEMBL, Symbol, int_core) %>%
left_join(mitocarta_oxphos) %>%
drop_na(Complex) %>%
mutate(Symbol = paste(Complex, Symbol, sep = "_")) %>%
dplyr::select(-Complex, -ENSEMBL) %>%
spread(cell_ID, int_core) %>%
gather(cell_ID, int_core, !Symbol) %>%
mutate_all(~replace(., is.na(.), 0)) -> d_OXPHOS
meta_distances_bin %>%
left_join(d_OXPHOS)%>%
mutate(complex = str_replace_all(Symbol, "_.*", "")) %>%
mutate(int = 2^int_core) %>%
group_by(Symbol, bin, complex) %>%
summarise(median = median(int), sd = sd(int, na.rm = T)) %>%
group_by(Symbol) %>%
mutate(sum = sum(median)) %>%
mutate(ratio = median/sum) %>%
filter(sum != classes) %>%
group_by(bin, complex) %>%
summarise(ratio_gp = median(ratio), sd_gp = sd(ratio, na.rm = T)) -> meta_distances_bin_summary
meta_distances_bin_summary %>%
filter(complex == "Complex I") %>%
mutate(base_CI = ratio_gp) %>%
dplyr::select(bin, base_CI) %>%
right_join(meta_distances_bin_summary) %>%
mutate(ratio_to_CI = ratio_gp / base_CI) -> summary_to_CI
meta_distances_bin_summary %>%
ggplot(aes(x = as.factor(bin), y = ratio_gp, group = complex, color = complex))+
geom_point(size = 2)+
geom_line()+
#geom_errorbar(aes(ymin = ratio_gp - sd_gp, ymax = ratio_gp + sd_gp), width=.2)+
scale_color_manual(values = viridis(6)) +
theme_bw()+
#scale_y_continuous(limits = c(0,0.15)) +
theme_classic() +
scale_alpha_continuous(range = c(0,1)) +
geom_hline(yintercept = 1/20) -> plot_expression_OXPHOS
## -- Save plots
ggsave(plot_expression_OXPHOS, file = "../output/Figures/OXPHOS_spatial.pdf", width = 6, height = 5)
summary_to_CI %>%
ggplot(aes(x = as.factor(bin), y = log10(ratio_to_CI), group = complex, color = complex))+
geom_point(size = 2)+
geom_line()+
#geom_errorbar(aes(ymin = ratio_gp - sd_gp, ymax = ratio_gp + sd_gp), width=.2)+
scale_color_manual(values = viridis(5)) +
theme_bw()+
#scale_y_continuous(limits = c(0,0.15)) +
theme_classic() +
scale_alpha_continuous(range = c(0,1)) #-> plot_expression_top10
## -- How many mitochondrial proteins covered
d %>%
drop_na(ENSEMBL) %>%
distinct(ENSEMBL) %>%
pull(ENSEMBL) -> all_prots
table(all_prots %in% mitocarta$EnsemblGeneID)