-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuser_data.py
186 lines (169 loc) · 7.42 KB
/
user_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""
! ONLY LOOK AT THIS IF YOU WANT TO DEVELOP ON THE COMMAND LINE, THIS IS NOT USED ANYWHERE ON THE APP!
Get or generate user data which includes outfit_tried, temp_global, and feeling
representing the clothes worn list, the weather outside, how the user felt with their outfit in that weather.
This is used for training the ML model.
"""
# Import the libraries
from random import randint
from sklearn.linear_model import LinearRegression
import statistics as tats
from points_to_english import Wardrobe, translate_outfit
# TESTING
my_closet = Wardrobe()
my_closet.generic_clothes_generator()
# TESTING
def user_happy(outfit_tried, temp_outfit, temp_global, *secrets):
"""check user feeling of this outfit in this temperature
Arguments:
outfit_tried {list} -- outfit used
temp_outfit {int} -- warmth of the outfit
temp_global {int} -- temperature outside
*secrets {list} -- [temp_desired, temp_coefficients]
Returns:
Boolean -- whether the user felt good in this outfit or not
Suggestion:
Returns:
int -- (-10 to 10) integer of how the user felt from freezing to melting
"""
if secrets[0] is not None and secrets[1] is not None:
temp_desired = secrets[0]
temp_coefficients = secrets[1]
temp_deviation = (temp_outfit + temp_global) - temp_desired
if temp_deviation > 2 or temp_deviation < -2:
return False
else:
for index, element in enumerate(outfit_tried):
if element == 0:
element_significance = 0
else:
element_significance = element / temp_outfit
if (
element_significance > 0.2 + temp_coefficients[index]
or element_significance < temp_coefficients[index] - 0.2
):
return False
return True
else:
user = input(
f"Did your outfit {outfit_tried} = {translate_outfit(my_closet,outfit_tried)} feel appropriate in temperature of {temp_global} (t or f)? "
).lower()
if user == "f":
return False
elif user == "t":
return True
else:
raise ValueError("Expected either t or f but got something else!")
def generate_data(data_amount, *secrets):
"""create train set data for machine learning; note that only the omniscient user knows the secret numbers
Arguments:
data_amount {int} -- how much data?
temp_desired {int} -- a secret number
temp_coefficients {[type]} -- a secret list of percentages that affect the user's temperature
"""
estimated_desired_temp = list()
estimated_coefficients = []
weather_input = list()
# make the range arbitrary equal to how many parts of clothing there are
outfit_output = [[] for _ in range(0, 4)]
if secrets:
temp_desired = secrets[0]
temp_desired_scaled = (40 / 134) * temp_desired
temp_coefficients = secrets[1]
else:
temp_desired_scaled = temp_coefficients = None
for _ in range(data_amount):
# make the range arbitrary in the future
temp_global_original = randint(0, 134)
# global temperature in the same terms as the temperature of the outfit
if secrets:
temp_global_scaled = (40 / 134) * temp_global_original
else:
temp_global_scaled = temp_global_original
# make the ranges arbitrary in the future
outfit_tried = [randint(0, 10) for _ in range(0, 4)]
temp_outfit = sum(outfit_tried)
if user_happy(
outfit_tried,
temp_outfit,
temp_global_scaled,
temp_desired_scaled,
temp_coefficients,
):
# May test what the algorithm tried and liked with this
# print(f"Tried and liked {outfit_tried} for weather {temp_global_original}")
estimated_desired_temp.append(temp_outfit + temp_global_scaled)
estimated_coefficients.append(
[element / temp_outfit for element in outfit_tried]
)
weather_input.append([int(temp_global_original)])
for index, output in enumerate(outfit_output):
output.append(int(outfit_tried[index]))
if not secrets:
temp_desired = sum(estimated_desired_temp) / len(estimated_desired_temp)
temp_coefficients = [[] for _ in range(0, 4)]
for outfit in estimated_coefficients:
for i in range(0, 4):
temp_coefficients[i].append(outfit[i])
temp_coefficients = [
sum(temp_coefficients[i]) / (len(temp_coefficients) - 1)
for i in range(0, 4)
]
print(
f"Estimated that the desired body temperature is {temp_desired} degrees fahrenheit \
\nEstimated that importance of elements is {[round(element, 2) for element in temp_coefficients]}"
)
return weather_input, outfit_output
def suggest_outfit(weather_input, outfit_output, weather_given):
# Create linear regression objects for the four clothing slots (make arbitrary)
predictors = [LinearRegression(n_jobs=-1) for _ in range(0, 4)]
# fit the linear model (approximate a target function)
for index, predictor in enumerate(predictors):
predictor.fit(X=weather_input, y=outfit_output[index])
X_TEST = [[int(weather_given)]]
# Predict the ouput of the test data using the linear model
outfit = [predictor.predict(X=X_TEST) for predictor in predictors]
for i in range(len(outfit)):
if outfit[i] < 0:
outfit[i] = 0
elif outfit[i] > 10:
outfit[i] = 10
return outfit
def main():
print("TIME FOR TESTING!")
secrets = input("Do you know the secrets? (t or f) ")
training_amount = int(input("Training amount: "))
secret_coefficients = []
if secrets == "t":
print("Enter 4 coefficients for head, top, bottom, and shoes accordingly:")
for _ in range(0, 4):
coef = float(input(""))
secret_coefficients.append(coef)
secret_temp_desired = int(input("Secret temperature desired: "))
weather = int(input("Weather in Fahrenheit: "))
while weather:
weather_input, outfit_output = generate_data(
training_amount, secret_temp_desired, secret_coefficients
)
suggested_outift = [
int(element)
for element in suggest_outfit(weather_input, outfit_output, weather)
]
print(
f"Suggested outfit: {suggested_outift} = {translate_outfit(my_closet, suggested_outift)}"
)
weather = int(input("Weather in Fahrenheit: "))
elif secrets == "f":
weather_input, outfit_output = generate_data(training_amount)
weather = int(input("Weather in Fahrenheit: "))
while weather:
suggested_outift = [
int(element)
for element in suggest_outfit(weather_input, outfit_output, weather)
]
print(
f"Suggested outfit: {suggested_outift} = {translate_outfit(my_closet, suggested_outift)}"
)
weather = int(input("Weather in Fahrenheit: "))
if __name__ == "__main__":
main()