-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
57 lines (44 loc) · 1.63 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import streamlit as st
import pickle
import pandas as pd
import requests
def fetchPoster(movie_id):
response = requests.get("https://api.themoviedb.org/3/movie/{}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US".format(movie_id))
data = response.json()
return "http://image.tmdb.org/t/p/w500/"+data['poster_path']
def recommend(movie):
movies_idx = movies[movies['title'] == movie].index[0]
distances = similarity[movies_idx]
movies_list = sorted(list(enumerate(distances)),reverse=True,key=lambda x:x[1])[1:6]
recommended = []
recommendedPosters = []
for i in movies_list:
movie_id = movies.iloc[i[0]].id
recommended.append(movies.iloc[i[0]].title)
recommendedPosters.append(fetchPoster(movie_id))
return recommended,recommendedPosters
movies_dict = pickle.load(open("movies.pkl","rb"))
movies = pd.DataFrame(movies_dict)
similarity = pickle.load(open("similarity_score.pkl","rb"))
st.title("Movie Recommender System")
selectedMovie = st.selectbox("Select a movie:",
movies['title'].values)
if st.button("Recommend"):
name,posters = recommend(selectedMovie)
print(posters[0])
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.markdown(name[0])
st.image(posters[0])
with col2:
st.markdown(name[1])
st.image(posters[1])
with col3:
st.markdown(name[2])
st.image(posters[2])
with col4:
st.markdown(name[3])
st.image(posters[3])
with col5:
st.markdown(name[4])
st.image(posters[4])