Skip to content

Latest commit

 

History

History
249 lines (199 loc) · 7.77 KB

README.md

File metadata and controls

249 lines (199 loc) · 7.77 KB

Forced Alignment with Hugging Face CTC Models

FreePalestine.Dev

Build Status GitHub stars GitHub issues GitHub license Twitter

drawing Please, star the project on github (see top-right corner) if you appreciate my contribution to the community!

This Python package provides an efficient way to perform forced alignment between text and audio using Hugging Face's pretrained models. It leverages the power of Wav2Vec2, HuBERT, and MMS models for accurate alignment, making it a powerful tool for creating speech corpuses.

Features

  • Atleast 5X less memory usage: Improved implementation to use much less memory than TorchAudio forced alignment API.
  • Wide range of language support: Works with multiple languages including English, Arabic, Russian, German, and 1126 more languages.
  • Flexibility in alignment granularity: Choose between aligning on a sentence, word, or character level.
  • Customizable alignment parameters: Control the frequency of <star> token insertion, merge threshold for segment merging, and more.
  • Integration with Hugging Face's models: Leverage the power of pretrained Wav2Vec2, HuBERT, and MMS models for accurate alignment.
  • GPU acceleration: Utilize your GPU for faster inference.
  • Output in JSON format: Provides clear and structured alignment results for easy analysis and integration.

Installation

Latest version from GitHub

pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git

Installing locally from source

git clone https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
cd ctc-forced-aligner
pip install -e .[dev]

Usage

ctc-forced-aligner --audio_path "path/to/audio.wav" --text_path "path/to/text.txt" --language "eng" --romanize
Terminal Usage

Arguments

Argument Description Default
--audio_path Path to the audio file Required
--text_path Path to the text file Required
--language Language in ISO 639-3 code Required
--romanize Enable romanization for non-latin scripts or for multilingual models regardless of the language, required when using the default model False
--split_size Alignment granularity: "sentence", "word", or "char" "word"
--star_frequency Frequency of <star> token: "segment" or "edges" "edges"
--merge_threshold Merge threshold for segment merging 0.00
--alignment_model Name of the alignment model MahmoudAshraf/mms-300m-1130-forced-aligner
--compute_dtype Compute dtype for inference "float32"
--batch_size Batch size for inference 4
--window_size Window size in seconds for audio chunking 30
--context_size Overlap between chunks in seconds 2
--attn_implementation Attention implementation "eager"
--device Device to use for inference: "cuda" or "cpu" "cuda" if available, else "cpu"

Examples

# Align an English audio file with the text file
ctc-forced-aligner --audio_path "english_audio.wav" --text_path "english_text.txt" --language "eng" --romanize

# Align a Russian audio file with romanized text
ctc-forced-aligner --audio_path "russian_audio.wav" --text_path "russian_text.txt" --language "rus" --romanize

# Align on a sentence level
ctc-forced-aligner --audio_path "audio.wav" --text_path "text.txt" --language "eng" --split_size "sentence" --romanize

# Align using a model with native vocabulary
ctc-forced-aligner --audio_path "audio.wav" --text_path "text.txt" --language "ara" --alignment_model "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
Python Usage

Python Usage

import torch
from ctc_forced_aligner import (
    load_audio,
    load_alignment_model,
    generate_emissions,
    preprocess_text,
    get_alignments,
    get_spans,
    postprocess_results,
)

audio_path = "your/audio/path"
text_path = "your/text/path"
language = "iso" # ISO-639-3 Language code
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_size = 16


alignment_model, alignment_tokenizer = load_alignment_model(
    device,
    dtype=torch.float16 if device == "cuda" else torch.float32,
)

audio_waveform = load_audio(audio_path, alignment_model.dtype, alignment_model.device)


with open(text_path, "r") as f:
    lines = f.readlines()
text = "".join(line for line in lines).replace("\n", " ").strip()

emissions, stride = generate_emissions(
    alignment_model, audio_waveform, batch_size=batch_size
)

tokens_starred, text_starred = preprocess_text(
    text,
    romanize=True,
    language=language,
)

segments, scores, blank_token = get_alignments(
    emissions,
    tokens_starred,
    alignment_tokenizer,
)

spans = get_spans(tokens_starred, segments, blank_token)

word_timestamps = postprocess_results(text_starred, spans, stride, scores)

Output

The alignment results will be saved to a file containing the following information in JSON format:

  • text: The aligned text.
  • segments: A list of segments, each containing the start and end time of the corresponding text segment.
JSON
{
  "text": "This is a sample text to be aligned with the audio.",
  "segments": [
    {
      "start": 0.000,
      "end": 1.234,
      "text": "This"
    },
    {
      "start": 1.234,
      "end": 2.567,
      "text": "is"
    },
    {
      "start": 2.567,
      "end": 3.890,
      "text": "a"
    },
    {
      "start": 3.890,
      "end": 5.213,
      "text": "sample"
    },
    {
      "start": 5.213,
      "end": 6.536,
      "text": "text"
    },
    {
      "start": 6.536,
      "end": 7.859,
      "text": "to"
    },
    {
      "start": 7.859,
      "end": 9.182,
      "text": "be"
    },
    {
      "start": 9.182,
      "end": 10.405,
      "text": "aligned"
    },
    {
      "start": 10.405,
      "end": 11.728,
      "text": "with"
    },
    {
      "start": 11.728,
      "end": 13.051,
      "text": "the"
    },
    {
      "start": 13.051,
      "end": 14.374,
      "text": "audio."
    }
  ]
}

Contributing

Contributions are welcome! Please feel free to open an issue or submit a pull request.

License

This project is licensed under the BSD License, note that the default model has CC-BY-NC 4.0 License, so make sure to use a different model for commercial usage.

Acknowledgements

This project is based on the work of FAIR MMS team.