-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtiramisu_net.py
94 lines (75 loc) · 3.1 KB
/
tiramisu_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 15 13:08:47 2018
@author: Ryan_ye
refer to https://github.com/SimJeg/FC-DenseNet/blob/master/FC-DenseNet.py
"""
from keras.layers import Activation,MaxPooling2D,UpSampling2D,Dense,BatchNormalization,Input,Reshape,multiply,add,Dropout,AveragePooling2D,GlobalAveragePooling2D,concatenate
from keras.layers.convolutional import Conv2D,Conv2DTranspose
from keras.models import Model
import keras.backend as K
from keras.regularizers import l2
from keras.engine import Layer,InputSpec
from keras.utils import conv_utils
from layers import BN_ReLU_Conv, TransitionDown, TransitionUp, SoftmaxLayer
def Tiramisu(
input_shape=(None,None,3),
n_classes = 1,
n_filters_first_conv = 48,
n_pool = 5,
growth_rate = 16 ,
n_layers_per_block = [4,5,7,10,12,15,12,10,7,5,4],
dropout_p = 0.2
):
if type(n_layers_per_block) == list:
print(len(n_layers_per_block))
elif type(n_layers_per_block) == int:
n_layers_per_block = [n_layers_per_block] * (2 * n_pool + 1)
else:
raise ValueError
#####################
# First Convolution #
#####################
inputs = Input(shape=input_shape)
stack = Conv2D(filters=n_filters_first_conv, kernel_size=3, padding='same', kernel_initializer='he_uniform')(inputs)
n_filters = n_filters_first_conv
#####################
# Downsampling path #
#####################
skip_connection_list = []
for i in range(n_pool):
for j in range(n_layers_per_block[i]):
l = BN_ReLU_Conv(stack, growth_rate, dropout_p=dropout_p)
stack = concatenate([stack, l])
n_filters += growth_rate
skip_connection_list.append(stack)
stack = TransitionDown(stack, n_filters, dropout_p)
skip_connection_list = skip_connection_list[::-1]
#####################
# Bottleneck #
#####################
block_to_upsample=[]
for j in range(n_layers_per_block[n_pool]):
l = BN_ReLU_Conv(stack, growth_rate, dropout_p=dropout_p)
block_to_upsample.append(l)
stack = concatenate([stack,l])
block_to_upsample = concatenate(block_to_upsample)
#####################
# Upsampling path #
#####################
for i in range(n_pool):
n_filters_keep = growth_rate * n_layers_per_block[n_pool + i ]
stack = TransitionUp(skip_connection_list[i], block_to_upsample, n_filters_keep)
block_to_upsample = []
for j in range(n_layers_per_block[ n_pool + i + 1 ]):
l = BN_ReLU_Conv(stack, growth_rate, dropout_p=dropout_p)
block_to_upsample.append(l)
stack = concatenate([stack, l])
block_to_upsample = concatenate(block_to_upsample)
#####################
# Softmax #
#####################
output = SoftmaxLayer(stack, n_classes)
model=Model(inputs = inputs, outputs = output)
model.summary()
return model