This repository has been archived by the owner on May 13, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
coreg_yokogawa_icp_adjust_weights.m
647 lines (548 loc) · 26.2 KB
/
coreg_yokogawa_icp_adjust_weights.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% coreg_yokogawa_icp_adjust_weights is a function to coregister a structural
% MRI with MEG data and associated headshape information
%
% Written by Robert Seymour Oct 2017 - July 2018 (some subfunctions
% contributed by Paul Sowman)
%
% INPUTS:
% - dir_name = directory name for the output of your coreg
% - confile = full path to the con file
% - mrkfile = full path to the mrk file
% - mri_file = full path to the NIFTI structural MRI file
% - hspfile = full path to the hsp (polhemus headshape) file
% - elpfile = full path to the elp file
% - hsp_points = number of points for downsampling the headshape (try 100-200)
% - scalpthreshold = threshold for scalp extraction (try 0.05 if unsure)
%
% VARIABLE INPUTS (if using please specify all):
% - do_vids = save videos to file. Requires CaptureFigVid.
% - weight_number = how strongly do you want to weight the facial points?
% - bad_coil = is there a bad coil to take out?
%
% EXAMPLE FUNCTION CALL:
% coreg_yokogawa_icp_adjust_weights(dir_name,confile,mrkfile,mri_file,...
% hspfile,elpfile,hsp_points, scalpthreshold,'yes',0.8,'')
%
% OUTPUTS:
% - grad_trans = correctly aligned sensor layout
% - headshape_downsampled = downsampled headshape (original variable name I know)
% - mri_realigned = the mri realigned based on fiducial points
% - trans_matrix = transformation matrix for accurate coregistration
% - mri_realigned2 = the coregistered mri based on ICP algorithm
% - headmodel_singleshell = coregistered singleshell headmodel
%
% THIS IS A WORK IN PROGRESS FUNCTION - any updates or suggestions would be
% much appreciated
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function coreg_yokogawa_icp_adjust_weights(dir_name,confile,mrkfile,mri_file,hspfile,elpfile,hsp_points,scalpthreshold,varargin)
if isempty(varargin)
do_vids = 'no';
weight_number = 0.1;
bad_coil = '';
else
do_vids = varargin{1};
weight_number = 1./varargin{2};
bad_coil = varargin{3}
end
cd(dir_name); disp('CDd to the right place');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Load initial variables & check the input of the function
% Get Polhemus Points
disp('Reading elp and headshape data');
[shape] = parsePolhemus(elpfile,hspfile);
shape = ft_convert_units(shape,'cm');
% Read the grads from the con file
disp('Reading sensor data from con file');
grad_con = ft_read_sens(confile); %load grads
grad_con = ft_convert_units(grad_con,'cm'); %in cm
% Read mrk_file
disp('Reading the mrk file');
mrk = ft_read_headshape(mrkfile,'format','yokogawa_mrk');
mrk = ft_convert_units(mrk,'cm'); %in cm
% Get headshape downsampled to specified no. of points
% with facial info preserved
fprintf('Downsampling headshape information to %d points whilst preserving facial information\n'...
,hsp_points);
headshape_downsampled = downsample_headshape(hspfile,hsp_points);
% Load in MRI
disp('Reading the MRI file');
mri_orig = ft_read_mri(mri_file); % in mm, read in mri from DICOM
mri_orig = ft_convert_units(mri_orig,'cm');
mri_orig.coordsys = 'neuromag';
% MRI...
% Give rough estimate of fiducial points
cfg = [];
cfg.method = 'interactive';
cfg.viewmode = 'ortho';
cfg.coordsys = 'bti';
[mri_realigned] = ft_volumerealign(cfg, mri_orig);
disp('Saving the first realigned MRI');
%save mri_realigned mri_realigned
% check that the MRI is consistent after realignment
ft_determine_coordsys(mri_realigned, 'interactive', 'no');
hold on; % add the subsequent objects to the figure
drawnow; % workaround to prevent some MATLAB versions (2012b and 2014b) from crashing
ft_plot_headshape(headshape_downsampled);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
% If there is no bad marker perform coreg normally
if isempty(bad_coil)
markers = mrk.fid.pos([2 3 1 4 5],:);%reorder mrk to match order in shape
[R,T,Yf,Err] = rot3dfit(markers,shape.fid.pnt(4:end,:));%calc rotation transform
meg2head_transm = [[R;T]'; 0 0 0 1];%reorganise and make 4*4 transformation matrix
grad_trans = ft_transform_geometry_PFS_hacked(meg2head_transm,grad_con); %Use my hacked version of the ft function - accuracy checking removed not sure if this is good or not
grad_trans.fid = shape; %add in the head information
save grad_trans grad_trans
% Else if there is a bad marker take out this info and perform coreg
else
fprintf(''); disp('TAKING OUT BAD MARKER');
% Identify the bad coil
badcoilpos = find(ismember(shape.fid.label,bad_coil));
% Take away the bad marker
marker_order = [2 3 1 4 5];
markers = mrk.fid.pos(marker_order,:);%reorder mrk to match order in shape
% Now take out the bad marker when you realign
markers(badcoilpos-3,:) = [];
fids_2_use = shape.fid.pnt(4:end,:); fids_2_use(badcoilpos-3,:) = [];
[R,T,Yf,Err] = rot3dfit(markers,fids_2_use);%calc rotation transform
meg2head_transm = [[R;T]'; 0 0 0 1];%reorganise and make 4*4 transformation matrix
grad_trans = ft_transform_geometry_PFS_hacked(meg2head_transm,grad_con); %Use my hacked version of the ft function - accuracy checking removed not sure if this is good or not
grad_trans.fid = shape; %add in the head information
save grad_trans grad_trans
end
%% Extract Scalp Surface
cfg = [];
cfg.output = 'scalp';
cfg.scalpsmooth = 5;
cfg.scalpthreshold = scalpthreshold;
scalp = ft_volumesegment(cfg, mri_realigned);
%% Create mesh out of scalp surface
cfg = [];
cfg.method = 'isosurface';
cfg.numvertices = 10000;
mesh = ft_prepare_mesh(cfg,scalp);
mesh = ft_convert_units(mesh,'cm');
%% Create Figure for Quality Checking
if strcmp(do_vids,'yes')
try
figure;
ft_plot_mesh(mesh,'facecolor',[238,206,179]./255,'EdgeColor','none','facealpha',0.8); hold on;
camlight; lighting phong; camlight left; camlight right; material dull
hold on; drawnow; view(0,0);
ft_plot_headshape(headshape_downsampled); drawnow;
OptionZ.FrameRate=15;OptionZ.Duration=5.5;OptionZ.Periodic=true;
CaptureFigVid([0,0; 360,0], 'mesh_quality',OptionZ)
catch
disp('You need CaptureFigVid in your MATLAB path. Download at https://goo.gl/Qr7GXb');
figure;
ft_plot_mesh(mesh,'facecolor',[238,206,179]./255,'EdgeColor','none','facealpha',0.8); hold on;
camlight; lighting phong; camlight left; camlight right; material dull
hold on; drawnow;
ft_plot_headshape(headshape_downsampled); drawnow;
view(0,0);print('mesh_quality','-dpng');
end
else
figure;
ft_plot_mesh(mesh,'facecolor',[238,206,179]./255,'EdgeColor','none','facealpha',0.8); hold on;
camlight; lighting phong; camlight left; camlight right; material dull
hold on; drawnow;
view(90,0);
ft_plot_headshape(headshape_downsampled); drawnow;
title('If this looks weird you might want to adjust the cfg.scalpthreshold value');
print('mesh_quality','-dpng');
end
%% Perform ICP using mesh and headshape information
numiter = 50;
disp('Performing ICP fit with 50 iterations\n');
% Weight the facial points x10 times higher than the head points
count_facialpoints2 = find(headshape_downsampled.pos(:,3)<3); x = 1;
% If there are no facial points ignore the weighting
if isempty(count_facialpoints2)
w = ones(size(headshape_downsampled.pos,1),1).*1;
weights = @(x)assignweights(x,w);
disp('NOT Applying Weighting\n');
% But if there are facial points apply weighting using weight_number
else
w = ones(size(headshape_downsampled.pos,1),1).*weight_number;
w(count_facialpoints2) = 1;
weights = @(x)assignweights(x,w);
fprintf('Applying Weighting of %d \n',weight_number);
end
% Now try ICP with weights
[R, t, err] = icp(mesh.pos', headshape_downsampled.pos', numiter, 'Minimize', 'plane', 'Extrapolation', true, 'Weight', weights, 'WorstRejection', 0.05);
%% Create figure to display how the ICP algorithm reduces error
clear plot;
figure; plot([1:1:51]',err,'LineWidth',8);
ylabel('Error'); xlabel('Iteration');
title('Error*Iteration');
set(gca,'FontSize',25);
%% Create transformation matrix
trans_matrix = inv([real(R) real(t);0 0 0 1]);
save trans_matrix trans_matrix
%% Create figure to assess accuracy of coregistration
mesh_spare = mesh;
mesh_spare.pos = ft_warp_apply(trans_matrix, mesh_spare.pos);
c = datestr(clock); %time and date
if strcmp(do_vids,'yes')
try
figure;
ft_plot_mesh(mesh_spare,'facecolor',[238,206,179]./255,'EdgeColor','none','facealpha',0.8); hold on;
camlight; lighting phong; camlight left; camlight right; material dull; hold on;
ft_plot_headshape(headshape_downsampled); title(sprintf('%s. Error of ICP fit = %d' , c, err(end)));
OptionZ.FrameRate=15;OptionZ.Duration=5.5;OptionZ.Periodic=true;
CaptureFigVid([0,0; 360,0], 'ICP_quality',OptionZ)
catch
figure;
ft_plot_mesh(mesh_spare,'facecolor',[238,206,179]./255,'EdgeColor','none','facealpha',0.8); hold on;
camlight; lighting phong; camlight left; camlight right; material dull; hold on;
ft_plot_headshape(headshape_downsampled); title(sprintf('%s. Error of ICP fit = %d' , c, err(end)));
print('ICP_quality','-dpng');
disp('You need CaptureFigVid in your MATLAB path. Download at https://goo.gl/Qr7GXb');
end
else
figure;
ft_plot_mesh(mesh_spare,'facecolor',[238,206,179]./255,'EdgeColor','none','facealpha',0.8); hold on;
camlight; lighting phong; camlight left; camlight right; material dull; hold on;
ft_plot_headshape(headshape_downsampled); title(sprintf('%s. Error of ICP fit = %d' , c, err(end)));
clear c; print('ICP_quality','-dpng');
end
%% Apply transform to the MRI
mri_realigned2 = ft_transform_geometry(trans_matrix,mri_realigned);
save mri_realigned2 mri_realigned2
% check that the MRI is consistent after realignment
ft_determine_coordsys(mri_realigned2, 'interactive', 'no');
hold on; % add the subsequent objects to the figure
drawnow; % workaround to prevent some MATLAB versions (2012b and 2014b) from crashing
ft_plot_headshape(headshape_downsampled);
%% Segment
cfg = [];
cfg.output = 'brain';
mri_segmented = ft_volumesegment(cfg, mri_realigned2);
%% Create singleshell headmodel
cfg = [];
cfg.method='singleshell';
headmodel_singleshell = ft_prepare_headmodel(cfg, mri_segmented); % in cm, create headmodel
% Flip headmodel around
%headmodel_singleshell.bnd.pos(:,2) = headmodel_singleshell.bnd.pos(:,2).*-1;
% Apply transformation matrix
%headmodel_singleshell.bnd.pos = ft_warp_apply(trans_matrix,headmodel_singleshell.bnd.pos);
figure;ft_plot_headshape(headshape_downsampled) %plot headshape
ft_plot_sens(grad_trans, 'style', 'k*')
ft_plot_vol(headmodel_singleshell, 'facecolor', 'cortex', 'edgecolor', 'cortex'); alpha(1.0); hold on;
ft_plot_mesh(mesh_spare,'facecolor','skin'); alpha(0.2);
camlight left; camlight right; material dull; hold on;
view([90,0]); title('After Coreg');
print('headmodel_quality','-dpdf');
save headmodel_singleshell headmodel_singleshell
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SUBFUNCTIONS
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [shape] = parsePolhemus(elpfile,hspfile)
fid1 = fopen(elpfile);
C = fscanf(fid1,'%c');
fclose(fid1);
E = regexprep(C,'\r','xx');
E = regexprep(E,'\t','yy');
returnsi = strfind(E,'xx');
tabsi = strfind(E,'yy');
sensornamesi = strfind(E,'%N');
fiducialsstarti = strfind(E,'%F');
lastfidendi = strfind(E(fiducialsstarti(3):fiducialsstarti(length(fiducialsstarti))+100),'xx');
fiducialsendi = fiducialsstarti(1)+strfind(E(fiducialsstarti(1):fiducialsstarti(length(fiducialsstarti))+lastfidendi(1)),'xx');
NASION = E(fiducialsstarti(1)+4:fiducialsendi(1)-2);
NASION = regexprep(NASION,'yy','\t');
NASION = str2num(NASION);
LPA = E(fiducialsstarti(2)+4:fiducialsendi(2)-2);
LPA = regexprep(LPA,'yy','\t');
LPA = str2num(LPA);
RPA = E(fiducialsstarti(3)+4:fiducialsendi(3)-2);
RPA = regexprep(RPA,'yy','\t');
RPA = str2num(RPA);
LPAredstarti = strfind(E,'LPAred');
LPAredendi = strfind(E(LPAredstarti(1):LPAredstarti(length(LPAredstarti))+45),'xx');
LPAred = E(LPAredstarti(1)+11:LPAredstarti(1)+LPAredendi(2)-2);
LPAred = regexprep(LPAred,'yy','\t');
LPAred = str2num(LPAred);
RPAyelstarti = strfind(E,'RPAyel');
RPAyelendi = strfind(E(RPAyelstarti(1):RPAyelstarti(length(RPAyelstarti))+45),'xx');
RPAyel = E(RPAyelstarti(1)+11:RPAyelstarti(1)+RPAyelendi(2)-2);
RPAyel = regexprep(RPAyel,'yy','\t');
RPAyel = str2num(RPAyel);
PFbluestarti = strfind(E,'PFblue');
PFblueendi = strfind(E(PFbluestarti(1):PFbluestarti(length(PFbluestarti))+45),'xx');
PFblue = E(PFbluestarti(1)+11:PFbluestarti(1)+PFblueendi(2)-2);
PFblue = regexprep(PFblue,'yy','\t');
PFblue = str2num(PFblue);
LPFwhstarti = strfind(E,'LPFwh');
LPFwhendi = strfind(E(LPFwhstarti(1):LPFwhstarti(length(LPFwhstarti))+45),'xx');
LPFwh = E(LPFwhstarti(1)+11:LPFwhstarti(1)+LPFwhendi(2)-2);
LPFwh = regexprep(LPFwh,'yy','\t');
LPFwh = str2num(LPFwh);
RPFblackstarti = strfind(E,'RPFblack');
RPFblackendi = strfind(E(RPFblackstarti(1):end),'xx');
RPFblack = E(RPFblackstarti(1)+11:RPFblackstarti(1)+RPFblackendi(2)-2);
RPFblack = regexprep(RPFblack,'yy','\t');
RPFblack = str2num(RPFblack);
allfids = [NASION;LPA;RPA;LPAred;RPAyel;PFblue;LPFwh;RPFblack];
fidslabels = {'NASION';'LPA';'RPA';'LPAred';'RPAyel';'PFblue';'LPFwh';'RPFblack'};
fid2 = fopen(hspfile);
C = fscanf(fid2,'%c');
fclose(fid2);
E = regexprep(C,'\r','xx'); %replace returns with "xx"
E = regexprep(E,'\t','yy'); %replace tabs with "yy"
returnsi = strfind(E,'xx');
tabsi = strfind(E,'yy');
headshapestarti = strfind(E,'position of digitized points');
headshapestartii = strfind(E(headshapestarti(1):end),'xx');
headshape = E(headshapestarti(1)+headshapestartii(2)+2:end);
headshape = regexprep(headshape,'yy','\t');
headshape = regexprep(headshape,'xx','');
headshape = str2num(headshape);
shape.pnt = headshape;
shape.fid.pnt = allfids;
shape.fid.label = fidslabels;
%convert to BESA style coordinates so can use the .pos file or sensor
%config from .con
% shape.pnt = cat(2,fliplr(shape.pnt(:,1:2)),shape.pnt(:,3)).*1000;
% %shape.pnt = shape.pnt(1:length(shape.pnt)-15,:); % get rid of nose points may want to alter or comment this depending on your digitisation
% %shape.pnt = shape.pnt*1000;
% neg = shape.pnt(:,2)*-1;
% shape.pnt(:,2) = neg;
%
% shape.fid.pnt = cat(2,fliplr(shape.fid.pnt(:,1:2)),shape.fid.pnt(:,3)).*1000;
% %shape.fid.pnt = shape.fid.pnt*1000;
% neg2 = shape.fid.pnt(:,2)*-1;
% shape.fid.pnt(:,2) = neg2;
% shape.unit='mm';
% shape = ft_convert_units(shape,'cm');
new_name2 = ['shape.mat'];
save (new_name2,'shape');
end
function [R,T,Yf,Err] = rot3dfit(X,Y)
%ROT3DFIT Determine least-square rigid rotation and translation.
% [R,T,Yf] = ROT3DFIT(X,Y) permforms a least-square fit for the
% linear form
%
% Y = X*R + T
%
% where R is a 3 x 3 orthogonal rotation matrix, T is a 1 x 3
% translation vector, and X and Y are 3D points sets defined as
% N x 3 matrices. Yf is the best-fit matrix.
%
% See also SVD, NORM.
%
% rot3dfit: Frank Evans, NHLBI/NIH, 30 November 2001
%
% ROT3DFIT uses the method described by K. S. Arun, T. S. Huang,and
% S. D. Blostein, "Least-Squares Fitting of Two 3-D Point Sets",
% IEEE Transactions on Pattern Analysis and Machine Intelligence,
% PAMI-9(5): 698 - 700, 1987.
%
% A better theoretical development is found in B. K. P. Horn,
% H. M. Hilden, and S. Negahdaripour, "Closed-form solution of
% absolute orientation using orthonormal matrices", Journal of the
% Optical Society of America A, 5(7): 1127 - 1135, 1988.
%
% Special cases, e.g. colinear and coplanar points, are not
% implemented.
%error(nargchk(2,2,nargin));
narginchk(2,2); %PFS Change to update
if size(X,2) ~= 3, error('X must be N x 3'); end;
if size(Y,2) ~= 3, error('Y must be N x 3'); end;
if size(X,1) ~= size(Y,1), error('X and Y must be the same size'); end;
% mean correct
Xm = mean(X,1); X1 = X - ones(size(X,1),1)*Xm;
Ym = mean(Y,1); Y1 = Y - ones(size(Y,1),1)*Ym;
% calculate best rotation using algorithm 12.4.1 from
% G. H. Golub and C. F. van Loan, "Matrix Computations"
% 2nd Edition, Baltimore: Johns Hopkins, 1989, p. 582.
XtY = (X1')*Y1;
[U,S,V] = svd(XtY);
R = U*(V');
% solve for the translation vector
T = Ym - Xm*R;
% calculate fit points
Yf = X*R + ones(size(X,1),1)*T;
% calculate the error
dY = Y - Yf;
Err = norm(dY,'fro'); % must use Frobenius norm
end
function [output] = ft_transform_geometry_PFS_hacked(transform, input)
% FT_TRANSFORM_GEOMETRY applies a homogeneous coordinate transformation to
% a structure with geometric information, for example a volume conduction model
% for the head, gradiometer of electrode structure containing EEG or MEG
% sensor positions and MEG coil orientations, a head shape or a source model.
%
% The units in which the transformation matrix is expressed are assumed to
% be the same units as the units in which the geometric object is
% expressed. Depending on the input object, the homogeneous transformation
% matrix should be limited to a rigid-body translation plus rotation
% (MEG-gradiometer array), or to a rigid-body translation plus rotation
% plus a global rescaling (volume conductor geometry).
%
% Use as
% output = ft_transform_geometry(transform, input)
%
% See also FT_WARP_APPLY, FT_HEADCOORDINATES
% Copyright (C) 2011, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_transform_geometry.m$
% flg rescaling check
allowscaling = ~ft_senstype(input, 'meg');
% determine the rotation matrix
rotation = eye(4);
rotation(1:3,1:3) = transform(1:3,1:3);
if any(abs(transform(4,:)-[0 0 0 1])>100*eps)
error('invalid transformation matrix');
end
%%### get rid of this accuracy checking below as some of the transformation
%%matricies will be a bit hairy###
if ~allowscaling
% allow for some numerical imprecision
%if abs(det(rotation)-1)>1e-6%100*eps
%if abs(det(rotation)-1)>100*eps % allow for some numerical imprecision
%error('only a rigid body transformation without rescaling is allowed');
%end
end
if allowscaling
% FIXME build in a check for uniform rescaling probably do svd or so
% FIXME insert check for nonuniform scaling, should give an error
end
tfields = {'pos' 'pnt' 'o' 'coilpos' 'chanpos' 'chanposold' 'chanposorg' 'elecpos', 'nas', 'lpa', 'rpa', 'zpoint'}; % apply rotation plus translation
rfields = {'ori' 'nrm' 'coilori' 'chanori' 'chanoriold' 'chanoriorg'}; % only apply rotation
mfields = {'transform'}; % plain matrix multiplication
recfields = {'fid' 'bnd' 'orig'}; % recurse into these fields
% the field 'r' is not included here, because it applies to a volume
% conductor model, and scaling is not allowed, so r will not change.
fnames = fieldnames(input);
for k = 1:numel(fnames)
if ~isempty(input.(fnames{k}))
if any(strcmp(fnames{k}, tfields))
input.(fnames{k}) = apply(transform, input.(fnames{k}));
elseif any(strcmp(fnames{k}, rfields))
input.(fnames{k}) = apply(rotation, input.(fnames{k}));
elseif any(strcmp(fnames{k}, mfields))
input.(fnames{k}) = transform*input.(fnames{k});
elseif any(strcmp(fnames{k}, recfields))
for j = 1:numel(input.(fnames{k}))
input.(fnames{k})(j) = ft_transform_geometry(transform, input.(fnames{k})(j));
end
else
% do nothing
end
end
end
output = input;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that applies the homogeneous transformation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [new] = apply(transform, old)
old(:,4) = 1;
new = old * transform';
new = new(:,1:3);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% rotate_about_z - make a rotation matix for arbitrary rotation in degrees
% around z axis
%
% Written by Paul Sowman Oct 2017 (http://web.iitd.ac.in/~hegde/cad/lecture/L6_3dtrans.pdf - page 4)
%
% INPUTS:
% - deg = degrees of rotation required
%
% OUTPUTS:
% - rmatx = a 4*4 rotation matrix for deg degrees about z
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function rmatx=rotate_about_z(deg)
deg = deg2rad(deg);
rmatx = [cos(deg) sin(deg) 0 0;-sin(deg) cos(deg) 0 0;0 0 1 0;0 0 0 1];
end
function [headshape_downsampled] = downsample_headshape(path_to_headshape,numvertices)
% Get headshape
headshape = ft_read_headshape(path_to_headshape);
% Convert to cm
headshape = ft_convert_units(headshape,'cm');
% Convert to BESA co-ordinates
% headshape.pos = cat(2,fliplr(headshape.pos(:,1:2)),headshape.pos(:,3));
% headshape.pos(:,2) = headshape.pos(:,2).*-1;
% Get indices of facial points (up to 4cm above nasion)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Is 4cm the correct distance?
% Possibly different for child system?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
count_facialpoints = find(headshape.pos(:,3)<4);
if isempty(count_facialpoints)
disp('CANNOT FIND ANY FACIAL POINTS - COREG BY ICP MAY BE INACCURATE');
else
facialpoints = headshape.pos(count_facialpoints,:,:);
rrr = 1:4:length(facialpoints);
facialpoints = facialpoints(rrr,:); clear rrr;
end
% Remove facial points for now
headshape.pos(count_facialpoints,:) = [];
% Create mesh out of headshape downsampled to x points specified in the
% function call
cfg.numvertices = numvertices;
cfg.method = 'headshape';
cfg.headshape = headshape.pos;
mesh = ft_prepare_mesh(cfg, headshape);
% Replace the headshape info with the mesh points
headshape.pos = mesh.pos;
% Create figure for quality checking
figure; subplot(2,2,1);ft_plot_mesh(mesh); hold on;
title('Downsampled Mesh');
view(0,0);
subplot(2,2,2);ft_plot_mesh(headshape); hold on;
title('Downsampled Headshape View 1');
view(0,0);
subplot(2,2,3);ft_plot_mesh(headshape); hold on;
title('Downsampled Headshape View 2');
view(90,0);
subplot(2,2,4);ft_plot_mesh(headshape); hold on;
title('Downsampled Headshape View 3');
view(180,0);
print('headshape_quality','-dpdf');
% Add the facial info back in
headshape.pos = vertcat(headshape.pos,facialpoints);
% Add in names of the fiducials from the sensor
headshape.fid.label = {'NASION','LPA','RPA'};
% Convert fiducial points to BESA
% headshape.fid.pos = cat(2,fliplr(headshape.fid.pos(:,1:2)),headshape.fid.pos(:,3));
% headshape.fid.pos(:,2) = headshape.fid.pos(:,2).*-1;
% Plot for quality checking
figure;
ft_plot_headshape(headshape) %plot headshape
view(0,0);
print('headshape_quality2','-dpdf');
% Export filename
headshape_downsampled = headshape;
end
% Assign Weights Function
function y = assignweights(x, w)
% x is an indexing vector with the same number of arguments as w
y = w(:)';
end
end