-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMMN_child_FT.m
179 lines (146 loc) · 6.38 KB
/
MMN_child_FT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Child FT MMN is a function to preprocess MMN data collected from MQ MEG
% using roving paradigm
%
% Written by Paul Sowman Apr 2018 )
%
% INPUTS:
% - hipass = cutoff for hipass filter
%*******************************************************
%You need 1 only .con file and the oddball run .txt file
%*******************************************************
% EXAMPLE FUNCTION CALL:
%MMN_child_FT(1.0,5) Hipass at 1 Hz and use the 5th standard
%
% OUTPUTS:
% THIS IS A WORK IN PROGRESS FUNCTION - any updates or suggestions would be
% much appreciated
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function MMN_child_FT(hipass) %hipass filter, which standard you want to use
downsample_factor = 5; %i.e. divide the orig sample rate by 5
global ft_default
ft_default.spmversion = 'spm12'; % Force SPM12, SPM8 doesn't go well with mac + 2017b
ft_defaults % This loads the rest of the defaults
ft_hastoolbox('fastica', 1);
files = dir('*.con');
hdr = ft_read_header(files(1).name,'dataformat','yokogawa_con'); %hdr to get Fs etc.
if ~isempty(find(ismember(hdr.label,'AG160')))
mkdir adultmeg
fprintf('\n\nADULT MEG\n\n')
error('This function is only for child MEG')
else
fprintf('\n\nCHILD MEG\n\n')
end
% ft_definetrial: defines the segments of data that will be read in by FT_PREPROCESSING
cfg = [];
cfg.trialfun = 'ft_trialfun_general';
cfg.channel = hdr.label(1:125);
cfg.lpfilter = 'yes';
cfg.lpfreq = 40;
cfg.hpfilter = 'yes';
cfg.hpfreq = hipass; %FIXME should try something lower to appease reviewers
cfg.hpfiltord = 5;
cfg.headerfile = files(1).name;
cfg.datafile = files(1).name;
data = ft_preprocessing(cfg);
cfg = [];
cfg.resamplefs = data.fsample/downsample_factor; % Here we are downsampling from 1000Hz --> 200Hz
cfg.detrend = 'yes'; % Helps with low-frequency drift
data = ft_resampledata(cfg, data);
% deal with 50Hz line noise
cfg = [];
cfg.bsfilter = 'yes';
cfg.bsfreq = [49.5 50.5];
data = ft_preprocessing(cfg, data);
data_clean = data;
%Create layout file for later + save
cfg = [];
cfg.grad = data.grad; % struct containing gradiometer definition
lay = ft_prepare_layout(cfg, data); % creates a 2-D layout of the channel locations
cfg = [];
cfg.dataset = '2712_SH_ME125_2017_10_04_B1.con';
cfg.trialdef.prestim = 1; % pre-stimulus interval
cfg.trialdef.poststim = 2; % post-stimulus interval
cfg.trialdef.eventtype = 'trigger';
cfg.trialdef.eventvalue = [1 2 3 4 5 6 7];%Trigger numbers
cfg.trialfun = 'trig_fun_125_mmn';
cfg = ft_definetrial(cfg);
%Here we downsample the matrix representing the trial structure
cfg.trl(:,1) = round(cfg.trl(:,1)/downsample_factor); %FIXME this is possibly a bit dirty - is there a better way?
cfg.trl(:,2) = cfg.trl(:,1)+length(-(cfg.trialdef.prestim):1/data.fsample:cfg.trialdef.poststim)-1;
cfg.trl(:,3) = round(cfg.trl(:,3)/downsample_factor);
%*********************************************
%Epoch the data - first find trial indices corresponding to the events
%of interest and group
data = ft_redefinetrial(cfg,data);
trigger_types = [cfg.event.value]';
cfg = [];
cfg.method = 'summary';
cfg.keepchannel = 'yes';
cfg.keeptrial = 'nan';
data = ft_rejectvisual(cfg, data);
deviant = find(ismember(trigger_types,1)); %trigger number 1 is first deviant
for i=1:5
eval(['standard_',num2str(i),' = find(ismember(trigger_types,',num2str(i+1),'));']);
end
good_trials_idx = find(any(~isnan(cell2mat(cellfun(@(isgood)isgood(:),data.trial,'uni',0))),1)); % bad trial are NaN
for i=1:5
cfg = [];
eval(['cfg.trials = intersect(standard_',num2str(i),',good_trials_idx);'])
eval(['standard_',num2str(i),'_ave = ft_timelockanalysis(cfg,data);'])
end
cfg.trials = intersect(deviant,good_trials_idx);
deviant_ave = ft_timelockanalysis(cfg,data);
c = autumn;
cfg = [];
cfg.layout = lay;
cfg.xlim = [-0.1 0.5];
cfg.graphcolor = ([c(1:10:50,:);[0 0 0]]);
figure;ft_multiplotER(cfg,standard_1_ave,standard_2_ave,standard_3_ave,standard_4_ave,standard_5_ave,deviant_ave);
cfg = [];
cfg.method = 'power';
for i=1:5
eval(['standard_',num2str(i),'_GFP = ft_globalmeanfield(cfg, standard_',num2str(i),'_ave);'])
end
deviant_GFP = ft_globalmeanfield(cfg, deviant_ave);
cfg = [];
cfg.xlim = [-0.1 0.5];
cfg.title = 'Global Field Power';
cfg.graphcolor = ([c(1:10:50,:);[0 0 0]]);
figure;subplot(4,2,1);ft_singleplotER(cfg,standard_1_GFP,standard_2_GFP,standard_3_GFP,standard_4_GFP,standard_5_GFP,deviant_GFP)
hold on
legend('standard_1','standard_2','standard_3','standard_4','standard_5','deviant')
cfg = [];
cfg.method = 'triangulation';
neighbours = ft_prepare_neighbours(cfg, data.grad); %To get neigbours of the pak for plotting
%%find peak amplitude in M100 window and find the index - this will be used
%%for plotting
window_time = standard_5_GFP.time(standard_5_GFP.time>0.1&standard_5_GFP.time<0.2);
peak_time = window_time(ismember(standard_5_GFP.avg(find(standard_5_GFP.time>0.1&standard_5_GFP.time<0.2)),...
max(standard_5_GFP.avg(find(standard_5_GFP.time>0.1&standard_5_GFP.time<0.2)))));
peak_amp = standard_5_GFP.avg(ismember(standard_5_GFP.avg(find(standard_5_GFP.time>0.1&standard_5_GFP.time<0.2)),...
max(standard_5_GFP.avg(find(standard_5_GFP.time>0.1&standard_5_GFP.time<0.2)))));
peak_index = find(ismember(standard_5_GFP.time,peak_time));
peak_amps = standard_5_ave.avg(:,peak_index);
elec_idxs = find(ismember(peak_amps,max(peak_amps)));
%%Plots below
cfg = [];
cfg.xlim = [peak_time peak_time];
cfg.layout = lay;
cfg.highlight = 'on';
cfg.highlightchannel = vertcat(neighbours(elec_idxs).neighblabel,neighbours(elec_idxs).label);
subplot(4,2,[2 4]);ft_topoplotER(cfg,standard_5_ave)
cfg = [];
cfg.channel = vertcat(neighbours(elec_idxs).neighblabel,neighbours(elec_idxs).label);
cfg.avgoverchan = 'yes';
cfg.nanmean = 'yes';
standard_5_ave_ROI = ft_selectdata(cfg,standard_5_ave);
deviant_ave_ROI = ft_selectdata(cfg,deviant_ave);
cfg = [];
cfg.xlim = [-0.1 0.5];
cfg.title = 'Peak Cluster';
subplot(4,2,3);ft_singleplotER(cfg,standard_5_ave_ROI,deviant_ave_ROI)
legend('standard','deviant')
end