-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAttendance_Project.py
113 lines (72 loc) · 2.5 KB
/
Attendance_Project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import cv2
import numpy as np
import face_recognition
import os
import csv
from datetime import datetime
from PIL import ImageGrab
# Source Images
path = 'ImagesAttendance'
images = []
classNames = []
myList = os.listdir(path)
print(myList)
# Attendance Sheet
if os.path.isfile('./Attendance.csv') == 0:
with open('Attendance.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["Name", "Time"])
# Student Names
for cl in myList:
curImg = cv2.imread(f'{path}/{cl}')
images.append(curImg)
classNames.append(os.path.splitext(cl)[0])
print(classNames)
# Face Encodings
def findEncodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
encodeListKnown = findEncodings(images)
print('Encoding Complete')
print("Number of Records: ",len(encodeListKnown))
# Mark Attendance
def markAttendance(name):
with open('Attendance.csv','r+') as f:
myDataList = f.readlines()
print(myDataList)
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.now()
dtString = now.strftime('%H:%M:%S')
f.writelines(f'\n{name},{dtString}')
# Webcam Launch
cap = cv2.VideoCapture(1)
while True:
success, img = cap.read()
imgS = cv2.resize(img,(0,0),None,0.25,0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown,encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown,encodeFace)
print(faceDis)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classNames[matchIndex].upper()
print(name)
y1,x2,y2,x1 = faceLoc
y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4
cv2.rectangle(img,(x1,y1),(x2,y2),(0,255,0),2)
cv2.rectangle(img,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
cv2.putText(img,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2)
markAttendance(name)
cv2.imshow('Webcam',img)
cv2.waitKey(1)