Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Minor changes to plotting - highlight the best or reference point #66

Merged
merged 6 commits into from
Sep 18, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 32 additions & 3 deletions obsidian/plotting/plotly.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,18 +51,34 @@ def visualize_inputs(campaign: Campaign) -> Figure:
+ ['Correlation Matrix']
+ [X.columns[i] for i in range(cols, n_dim)]
)
# if campaign.optimizer is fitted, then X_best_f_idx is identified
if 'X_best_f_idx' in dir(campaign.optimizer):
marker_shapes = ['diamond' if rowInd in [campaign.optimizer.X_best_f_idx] else 'circle' for rowInd in range(campaign.X.shape[0])]
else:
marker_shapes = ['circle']*campaign.X.shape[0]

for i, param in enumerate(X.columns):
row_i = i // cols + 1
col_i = i % cols + 1
fig.add_trace(go.Scatter(x=X.index, y=X[param],
mode='markers', name=param,
marker=dict(color=color_list[i]),
marker=dict(color=color_list[i], symbol=marker_shapes),
showlegend=False),
row=row_i, col=col_i)
fig.update_xaxes(tickvals=np.around(np.linspace(0, campaign.m_exp, 5)),
row=row_i, col=col_i)

# Add note to explain the shape of markers
if hasattr(campaign.optimizer, 'X_best_f_idx'):
fig.add_annotation(
text="Note: The diamond markers denote samples that achieve the best sum of targets.",
showarrow=False,
xref="paper", yref="paper",
x=0,
y=-0.2,
font=dict(style="italic")
)

# Calculate the correlation matrix
X_u = campaign.X_space.unit_map(X)
corr_matrix = X_u.corr()
Expand Down Expand Up @@ -325,8 +341,9 @@ def factor_plot(optimizer: Optimizer,
Y_mu_ref = Y_pred_ref[y_name+('_t (pred)' if f_transform else ' (pred)')].values
fig.add_trace(go.Scatter(x=X_ref.iloc[:, feature_id].values, y=Y_mu_ref,
mode='markers',
marker=dict(symbol='diamond'),
line={'color': obsidian_colors.teal},
name='Ref'),
name='Reference'),
)
fig.update_xaxes(title_text=X_name)
fig.update_yaxes(title_text=y_name)
Expand Down Expand Up @@ -544,7 +561,19 @@ def optim_progress(campaign: Campaign,
marker=marker_dict,
customdata=campaign.data[X_names],
name='Data'))


# Highlight the best samples
if hasattr(campaign.optimizer, 'X_best_f_idx'):
fig.add_trace(go.Scatter(x=pd.Series(out_exp.iloc[campaign.optimizer.X_best_f_idx, 0]),
y=pd.Series(out_exp.iloc[campaign.optimizer.X_best_f_idx, 1]),
mode='markers',
marker=dict(symbol='diamond-open', size=14),
line={'color': 'black'},
legendgroup='marker_shape', showlegend=True,
name='Best')
)
fig.update_layout(showlegend=True)

template = ["<b>"+str(param.name)+"</b>: "+" %{customdata["+str(i)+"]"
+ (":.3G}"if isinstance(param, Param_Continuous) else "}") + "<br>"
for i, param in enumerate(campaign.X_space)]
Expand Down
Loading