-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_handler.py
69 lines (53 loc) · 2.15 KB
/
data_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from config import Config
import tensorflow as tf
class DataHandler:
def __init__(self):
self.conf = Config()
"""
def load_dataset(self, address):
image_size = self.conf.get_image_size()
images = []
labels = []
labels_name = []
class_folder_list = os.listdir(address)
for index, class_folder in enumerate(class_folder_list):
image_address_list = os.listdir(address + '\\' + class_folder)
for image_address in image_address_list:
image = cv2.imread(address + '\\' + class_folder + '\\' + image_address)
image = cv2.resize(image, [image_size, image_size])
images.append(image)
labels.append(index)
X_train, X_test, y_train, y_test = self.split_data(images, labels)
labels_name = class_folder_list
return X_train, X_test, y_train, y_test, labels_name
def split_data(self, X, y):
X, y = shuffle(X, y)
conf = Config()
train_ratio = conf.get_train_ratio()
num_train = int(np.ceil(len(X) * train_ratio))
X_train = X[:num_train]
X_test = X[num_train:]
y_train = y[:num_train]
y_test = y[num_train:]
return X_train, X_test, y_train, y_test
"""
def load_dataset(self):
dataset_dir = self.conf.get_dataset_address()
validation_split = 1 - self.conf.get_train_ratio()
image_size = (self.conf.get_image_size(), self.conf.get_image_size())
batch_size = self.conf.get_batch_size()
train_set = tf.keras.utils.image_dataset_from_directory(
dataset_dir,
validation_split=validation_split,
subset="training",
seed=2020,
image_size=image_size,
batch_size=batch_size)
test_set = tf.keras.utils.image_dataset_from_directory(
dataset_dir,
validation_split=validation_split,
subset="validation",
seed=123,
image_size=image_size,
batch_size=batch_size)
return train_set, test_set