Skip to content

MECLabTUDA/SAM-White

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Exploring SAM Ablations for Enhancing Medical Segmentation

This repository represents the official PyTorch code base for our paper Exploring SAM Ablations for Enhancing Medical Segmentation. For more details, please refer to our paper.

Table Of Contents

  1. Installation
  2. How to get started?
  3. Data and pre-trained models
  4. Citations
  5. License

Installation

The simplest way to install all dependencies is by using Anaconda:

  1. Create a Python 3.9 environment as conda create -n <your_conda_env> python=3.9 and activate it as conda activate <your_conda_env>.
  2. Install CUDA and PyTorch through conda with the command specified by PyTorch. The command for Linux was at the time conda install pytorch torchvision cudatoolkit=11.3 -c pytorch. Our code was last tested with version 1.13. Pytorch and TorchVision versions can be specified during the installation as conda install pytorch==<X.X.X> torchvision==<X.X.X> cudatoolkit=<X.X> -c pytorch. Note that the cudatoolkit version should be of the same major version as the CUDA version installed on the machine, e.g. when using CUDA 11.x one should install a cudatoolkit 11.x version, but not a cudatoolkit 10.x version.
  3. Navigate to the project root (where setup.py lives).
  4. Execute pip install -r requirements.txt to install all required packages.

How to get started?

  • The easiest way to start is using our train_abstract_*.py python files. For every baseline, we provide specific train_abstract_*.py python files, located in the scripts folder.
  • The eval folder contains several jupyter notebooks that were used to calculate performance metrics and plots used in our submission.

Data and pre-trained models

For more information about our experiments and ablations, please read the following paper:

Ranem, A., Babendererde, N., Frisch Y., Krumb, H. J., Fuchs, M., & Mukhopadhyay, A. (2023).
Exploring sam ablations for enhancing medical segmentation in radiology and pathology. arXiv preprint arXiv:2310.00504.

Citations

If you are using our work or code base for your article, please cite the following paper:

@article{ranem2023exploring,
  title={Exploring sam ablations for enhancing medical segmentation in radiology and pathology},
  author={Ranem, Amin and Babendererde, Niklas and Frisch, Yannik and Krumb, Henry John
          and Fuchs, Moritz and Mukhopadhyay, Anirban},
  journal={arXiv preprint arXiv:2310.00504},
  year={2023}
}

License

Apache License 2.0

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published