-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTopography.py
267 lines (221 loc) · 8.53 KB
/
Topography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 26 20:58:54 2023
@author: marek
"""
import os
import numpy as np
import itertools
from STMData import STMData
import Filters
import Curves
import Images
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
class Topography(STMData):
AXES = ['Forward-Up', 'Backward-Up', 'Forward-Down', 'Backward-Down']
def __init__(self, filetype, data, unit='m', ax=0):
super().__init__()
self.available_axes = []
self.active_ax = ax
self.z_data = []
if filetype == 'mtrx':
self.__initMtrx(data, ax)
if filetype == 'xyz':
self.__initXYZ(data, unit)
self.X, self.xunit = self.auto_set_unit(self.X, self.xunit)
self.Y = self.set_unit(self.Y, self.yunit, self.xunit)
self.yunit = self.xunit
#for enum, z in enumerate(self.z_data):
# if self.available_axes[enum]:
# self.z_data[enum], self.unit = self.auto_set_unit(z, self.unit)
self.Z, self.unit = self.update_unit(self.Z, self.unit)
def __initMtrx(self, mtrx, ax):
self.datatype = mtrx.datatype
self.parameters = mtrx.parameter
self.X = mtrx.x
self.Y = mtrx.y
_, self.filename = os.path.split(mtrx.file)
self.xunit = 'm'
self.yunit = 'm'
self.active_ax = 0
self.z_data.append(mtrx.imageForwUp)
self.z_data.append(mtrx.imageBackUp)
self.z_data.append(mtrx.imageForwDown)
self.z_data.append(mtrx.imageBackDown)
self._available_axes()
self.change_ax(ax=None)
if self.datatype == 'Z':
self.__initMtrxZ(mtrx, ax)
if self.datatype == 'I':
self.__initMtrxI(mtrx, ax)
def __initMtrxZ(self, mtrx, ax=None):
self.unit = 'm'
self.name = f'Topography Image ({self.AXES[self.active_ax]}): {self.filename}'
self.set_zero_level()
def __initMtrxI(self, mtrx, ax=None):
self.unit = 'A'
self.name = f'Current Image ({self.AXES[self.active_ax]}): {self.filename}'
def __initXYZ(self, data, unit):
self.X = data[0]
self.Y = data[1]
self.Z = data[2]
self.unit = unit
self.xunit = unit
self.yunit = unit
self.filename = data[3]
def _available_axes(self):
for x in self.z_data:
if x == []:
self.available_axes.append(False)
else:
self.available_axes.append(True)
def change_ax(self, ax=None):
if ax is None:
for enum, x in enumerate(self.available_axes):
if x != 0:
self.Z = self.z_data[enum]
self.active_ax = enum
return
else:
self.Z, si_unit = self.unit_to_si(self.Z, self.unit)
self.Z, self.z_data[self.active_ax] = self.z_data[ax], self.Z
self.active_ax = ax
self.Z, self.unit = self.update_unit(self.Z, si_unit)
if self.datatype == 'Z':
self.name = f'Topography Image ({self.AXES[self.active_ax]}): {self.filename}'
if self.datatype == 'I':
self.name = f'Current Image ({self.AXES[self.active_ax]}): {self.filename}'
def plotData(self, ax=None):
if ax:
im = ax.pcolor(self.X * 10 ** 9, self.Y * 10 ** 9, self.Z)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
ax.axis('equal')
plt.colorbar(im, cax=cax)
def XYZ(self):
x, _ = self.unit_to_si(self.X, self.xunit)
y, _ = self.unit_to_si(self.Y, self.yunit)
z, _ = self.unit_to_si(self.Z, self.unit)
return np.hstack([x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)])
def saveXYZ(self, filename=None):
if filename == None:
filename = self.filename + '.xyz'
if filename[-3:] != 'xyz':
filename = filename + '.xyz'
XYZ = self.XYZ()
np.savetxt(filename, XYZ)
# Leveling
def level_linewise(self):
for i in range(self.Z.shape[0]):
a, b = np.linalg.lstsq(np.vstack([self.X[i, :], np.ones(len(self.X[i, :]))]).T, self.Z[i, :], rcond=None)[0]
self.Z[i, :] = self.Z[i, :] - self.X[i, :] * a - b
self.Z, self.unit = self.update_unit(self.Z, self.unit)
def level_plane(self):
x = self.X.reshape((-1,))
y = self.Y.reshape((-1,))
z = self.Z.reshape((-1,))
def polyfit2d(x, y, z, order=1):
ncols = (order + 1) ** 2
G = np.zeros((x.size, ncols))
ij = itertools.product(range(order + 1), range(order + 1))
for k, (i, j) in enumerate(ij):
G[:, k] = x ** i * y ** j
m, _, _, _ = np.linalg.lstsq(G, z, rcond=None)
return m
def polyval2d(x, y, m):
order = int(np.sqrt(len(m))) - 1
ij = itertools.product(range(order + 1), range(order + 1))
z = np.zeros_like(x)
for a, (i, j) in zip(m, ij):
z += a * x ** i * y ** j
return z
m = polyfit2d(x, y, z)
z = polyval2d(z, y, m)
z = z.reshape((self.Z.shape))
self.Z = self.Z - z
self.Z, self.unit = self.update_unit(self.Z, self.unit)
def get_z_range(self):
min = np.amin(self.Z)
max = np.amax(self.Z)
range = max - min
return range
def get_x_range(self):
min = np.amin(self.X)
max = np.amax(self.X)
range = max - min
return range
def get_y_range(self):
min = np.amin(self.Y)
max = np.amax(self.Y)
range = max - min
return range
def get_units(self):
return self.unit, self.xunit, self.yunit
# Basic operations
def set_zero_level(self):
min_z = np.min(self.Z)
self.Z = self.Z - min_z
def change_level(self, z):
self.Z += z
def scale(self, factors):
self.X = self.X * factors[0]
self.Y = self.Y * factors[1]
self.Z = self.Z * factors[2]
self.Z, self.unit = self.update_unit(self.Z, self.unit)
self.X, self.xunit = self.update_unit(self.X, self.xunit)
self.Y = self.set_unit(self.Y, self.yunit, self.xunit)
self.yunit = self.xunit
def mirror_ud(self):
self.Z = np.flipud(self.Z)
def mirror_lr(self):
self.Z = np.fliplr(self.Z)
def rotate90(self, k):
self.Z = np.rot90(self.Z, k)
if k % 2 != 0:
self.X, self.Y = np.rot90(self.Y), np.rot90(self.X, 3)
# Filtering
def median(self, size):
self.Z = Filters.median2d(self.Z, size)
self.Z, self.unit = self.update_unit(self.Z, self.unit)
def mean(self, size):
self.Z = Filters.mean2d(self.Z, size)
self.Z, self.unit = self.update_unit(self.Z, self.unit)
# Measure profile
def get_profile(self, start_point, end_point, width):
profile = Curves.extract_profile(self.Z, start_point, end_point, width)
dist = ((self.X[start_point[0], start_point[1]] - self.X[end_point[0], end_point[1]]) ** 2 +
(self.Y[start_point[0], start_point[1]] - self.Y[end_point[0], end_point[1]]) ** 2) ** 0.5
distance = np.linspace(0, dist, num=len(profile))
return distance, profile
# Histogram
def histogram(self, n_bins):
z = self.Z.reshape(-1, 1)
hist, bin_edges = np.histogram(z, n_bins)
return hist, bin_edges
# FFT
def fft(self):
return Images.fft_image(self.Z)
def ifft(self, fft_image):
return Images.ifft_image(fft_image)
class ProfileData(STMData):
def __init__(self, distance, profile, xunit, unit, name=None):
self.distance = distance
self.profile = profile
self.filename = name
self.unit = unit
self.xunit = xunit
def auto_units(self):
self.distance, self.xunit = self.update_unit(self.distance, self.xunit)
self.profile, self.unit = self.update_unit(self.profile, self.unit)
def set_profile_units(self, xunit, unit):
if not self.unit == unit:
self.profile = self.set_unit(self.profile, self.unit, unit)
self.unit = unit
if not self.xunit == xunit:
self.distance = self.set_unit(self.distance, self.xunit, xunit)
self.xunit = xunit
def get_range(self):
return np.ptp(self.unit_to_si(self.profile, self.unit)[0])
def get_xrange(self):
return np.ptp(self.unit_to_si(self.distance, self.xunit)[0])