Skip to content

[ICLR 2024] STanHop: Sparse Tandem Hopfield Model for Memory-Enhanced Time Series Prediction

License

Notifications You must be signed in to change notification settings

MAGICS-LAB/STanHop

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

STanHop: Sparse Tandem Hopfield Model for Memory-Enhanced Time Series Prediction

This is the code for the paper: STanHop: Sparse Tandem Hopfield Model for Memory-Enhanced Time Series Prediction

to run the experiment, First create a json file inside folder config/, and name it <data>_<out_len>.json. For more, please see example file. then use etc: python3 run.py --data <data> --out_len <out_len>.

If you find our code useful, please consider citing our work

@inproceedings{
wu2023stanhop,
title={STanHop: Sparse Tandem Hopfield Model for Memory-Enhanced Time Series Prediction},
author={Wu, Dennis and Hu, Jerry Yao-Chieh and Li, Weijian and Chen, Bo-Yu and Liu, Han},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://arxiv.org/abs/2312.17346}
}