-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainchat.py
256 lines (207 loc) · 14.1 KB
/
trainchat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import json
import math
import logging
from pprint import pformat
from argparse import ArgumentParser
from collections import defaultdict
from itertools import chain
import torch
from torch.utils.data import DataLoader, TensorDataset
from ignite.engine import Engine, Events
from ignite.handlers import ModelCheckpoint, global_step_from_engine
from ignite.metrics import Accuracy, Loss, MetricsLambda, RunningAverage
from ignite.contrib.handlers import ProgressBar, PiecewiseLinear
from ignite.contrib.handlers.tensorboard_logger import TensorboardLogger, OutputHandler, OptimizerParamsHandler
from transformers import OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, GPT2DoubleHeadsModel, GPT2Tokenizer, WEIGHTS_NAME, CONFIG_NAME
import socket
from datetime import datetime
from utils import PADDED_INPUTS, SPECIAL_TOKENS, MODEL_INPUTS, get_dataset, add_special_tokens_
logger = logging.getLogger(__file__)
def make_logdir(model_name: str):
"""Create unique path to save results and checkpoints, e.g. runs/Sep22_19-45-59_gpu-7_gpt2"""
# Code copied from ignite repo
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
logdir = os.path.join(
'runs', current_time + '_' + socket.gethostname() + '_' + model_name)
return logdir
def average_distributed_scalar(scalar, args):
""" Average a scalar over the nodes if we are in distributed training. We use this for distributed evaluation. """
if args.local_rank == -1:
return scalar
scalar_t = torch.tensor(scalar, dtype=torch.float, device=args.device) / torch.distributed.get_world_size()
torch.distributed.all_reduce(scalar_t, op=torch.distributed.ReduceOp.SUM)
return scalar_t.item()
def pad_dataset(dataset, padding=0):
""" Pad the dataset. This could be optimized by defining a Dataset class and padding at the batch level, but this is simpler. """
max_l = max(len(x) for x in dataset["input_ids"])
for name in PADDED_INPUTS:
dataset[name] = [x + [padding if name != "lm_labels" else -100] * (max_l - len(x)) for x in dataset[name]]
return dataset
def build_input_from_segments(persona, history, reply, tokenizer, lm_labels=False, with_eos=True):
""" Build a sequence of input from 3 segments: persona, history and last reply. """
bos, eos, speaker1, speaker2 = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[:-1])
sequence = [[bos] + list(chain(*persona))] + history + [reply + ([eos] if with_eos else [])]
sequence = [sequence[0]] + [[speaker2 if (len(sequence)-i) % 2 else speaker1] + s for i, s in enumerate(sequence[1:])]
instance = {}
instance["input_ids"] = list(chain(*sequence))
instance["token_type_ids"] = [speaker2 if i % 2 else speaker1 for i, s in enumerate(sequence) for _ in s]
instance["mc_token_ids"] = len(instance["input_ids"]) - 1
instance["lm_labels"] = [-100] * len(instance["input_ids"])
if lm_labels:
instance["lm_labels"] = ([-100] * sum(len(s) for s in sequence[:-1])) + [-100] + sequence[-1][1:]
return instance
def get_data_loaders(args, tokenizer):
""" Prepare the dataset for training and evaluation """
personachat = get_dataset(tokenizer)
logger.info("Build inputs and labels")
datasets = {"train": defaultdict(list), "valid": defaultdict(list)}
for dataset_name, dataset in personachat.items():
num_candidates = len(dataset[0]["utterances"][0]["candidates"])
if args.num_candidates > 0 and dataset_name == 'train':
num_candidates = min(args.num_candidates, num_candidates)
for dialog in dataset:
persona = dialog["personality"].copy()
for _ in range(args.personality_permutations):
for utterance in dialog["utterances"]:
history = utterance["history"][-(2*args.max_history+1):]
for j, candidate in enumerate(utterance["candidates"][-num_candidates:]):
lm_labels = bool(j == num_candidates-1)
instance = build_input_from_segments(persona, history, candidate, tokenizer, lm_labels)
for input_name, input_array in instance.items():
datasets[dataset_name][input_name].append(input_array)
datasets[dataset_name]["mc_labels"].append(num_candidates - 1)
datasets[dataset_name]["n_candidates"] = num_candidates
persona = [persona[-1]] + persona[:-1] # permuted personalities
logger.info("Pad inputs and convert to Tensor")
tensor_datasets = {"train": [], "valid": []}
for dataset_name, dataset in datasets.items():
dataset = pad_dataset(dataset, padding=tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[-1]))
for input_name in MODEL_INPUTS:
tensor = torch.tensor(dataset[input_name])
if input_name != "mc_labels":
tensor = tensor.view((-1, datasets[dataset_name]["n_candidates"]) + tensor.shape[1:])
tensor_datasets[dataset_name].append(tensor)
logger.info("Build train and validation dataloaders")
train_dataset, valid_dataset = TensorDataset(*tensor_datasets["train"]), TensorDataset(*tensor_datasets["valid"])
train_sampler = None
valid_sampler = None
train_loader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, shuffle=True)
valid_loader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.valid_batch_size, shuffle=False)
logger.info("Train dataset (Batch, Candidates, Seq length): {}".format(train_dataset.tensors[0].shape))
logger.info("Valid dataset (Batch, Candidates, Seq length): {}".format(valid_dataset.tensors[0].shape))
return train_loader, valid_loader, train_sampler, valid_sampler
def train():
parser = ArgumentParser()
parser.add_argument("--dataset_path", type=str, default="", help="Path or url of the dataset. If empty download from S3.")
parser.add_argument("--dataset_cache", type=str, default='./dataset_cache', help="Path or url of the dataset cache")
parser.add_argument("--model_checkpoint", type=str, default="gpt2", help="Path, url or short name of the model")
parser.add_argument("--num_candidates", type=int, default=2, help="Number of candidates for training")
parser.add_argument("--max_history", type=int, default=2, help="Number of previous exchanges to keep in history")
parser.add_argument("--train_batch_size", type=int, default=4, help="Batch size for training")
parser.add_argument("--valid_batch_size", type=int, default=4, help="Batch size for validation")
parser.add_argument("--gradient_accumulation_steps", type=int, default=8, help="Accumulate gradients on several steps")
parser.add_argument("--lr", type=float, default=6.25e-5, help="Learning rate")
parser.add_argument("--lm_coef", type=float, default=1.0, help="LM loss coefficient")
parser.add_argument("--mc_coef", type=float, default=1.0, help="Multiple-choice loss coefficient")
parser.add_argument("--max_norm", type=float, default=1.0, help="Clipping gradient norm")
parser.add_argument("--n_epochs", type=int, default=1, help="Number of training epochs")
parser.add_argument("--personality_permutations", type=int, default=1, help="Number of permutations of personality sentences")
parser.add_argument("--eval_before_start", action='store_true', help="If true start with a first evaluation before training")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device (cuda or cpu)")
parser.add_argument("--fp16", type=str, default="", help="Set to O0, O1, O2 or O3 for fp16 training (see apex documentation)")
parser.add_argument("--local_rank", type=int, default=-1, help="Local rank for distributed training (-1: not distributed)")
args = parser.parse_args()
# logging is set to INFO (resp. WARN) for main (resp. auxiliary) process. logger.info => log main process only, logger.warning => log all processes
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Running process %d", args.local_rank) # This is a logger.warning: it will be printed by all distributed processes
logger.info("Arguments: %s", pformat(args))
logger.info("Prepare tokenizer, pretrained model and optimizer.")
tokenizer_class = GPT2Tokenizer if "gpt2" in args.model_checkpoint else OpenAIGPTTokenizer # cant use Autotokenizer because checkpoint could be a Path
tokenizer = tokenizer_class.from_pretrained(args.model_checkpoint)
model_class = GPT2DoubleHeadsModel if "gpt2" in args.model_checkpoint else OpenAIGPTDoubleHeadsModel
model = model_class.from_pretrained(args.model_checkpoint)
model.to(args.device)
# Add special tokens if they are not already added
add_special_tokens_(model, tokenizer)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr) #AdamW(model.parameters(), lr=args.lr, correct_bias=True)
logger.info("Prepare datasets")
train_loader, val_loader, train_sampler, valid_sampler = get_data_loaders(args, tokenizer)
# Training function and trainer
def update(engine, batch):
model.train()
batch = tuple(input_tensor.to(args.device) for input_tensor in batch)
input_ids, mc_token_ids, labels, mc_labels, token_type_ids = batch
outputs = model(
input_ids, token_type_ids=token_type_ids, mc_token_ids=mc_token_ids,
mc_labels=mc_labels, labels=labels
)
lm_loss = outputs.loss
mc_loss = outputs.mc_loss
loss = (lm_loss * args.lm_coef + mc_loss * args.mc_coef) / args.gradient_accumulation_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
if engine.state.iteration % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
return loss.item()
trainer = Engine(update)
# Evaluation function and evaluator (evaluator output is the input of the metrics)
def inference(engine, batch):
model.eval()
with torch.no_grad():
batch = tuple(input_tensor.to(args.device) for input_tensor in batch)
input_ids, mc_token_ids, lm_labels, mc_labels, token_type_ids = batch
logger.info(tokenizer.decode(input_ids[0, -1, :].tolist()))
# if we dont send labels to model, it doesnt return losses
outputs = model(
input_ids, token_type_ids=token_type_ids, mc_token_ids=mc_token_ids
)
lm_logits = outputs.logits
mc_logits = outputs.mc_logits
lm_logits_flat_shifted = lm_logits[..., :-1, :].contiguous().view(-1, lm_logits.size(-1))
lm_labels_flat_shifted = lm_labels[..., 1:].contiguous().view(-1)
return (lm_logits_flat_shifted, mc_logits), (lm_labels_flat_shifted, mc_labels)
evaluator = Engine(inference)
# Attach evaluation to trainer: we evaluate when we start the training and at the end of each epoch
trainer.add_event_handler(Events.EPOCH_COMPLETED, lambda _: evaluator.run(val_loader))
if args.n_epochs < 1:
trainer.add_event_handler(Events.COMPLETED, lambda _: evaluator.run(val_loader))
if args.eval_before_start:
trainer.add_event_handler(Events.STARTED, lambda _: evaluator.run(val_loader))
# Linearly decrease the learning rate from lr to zero
scheduler = PiecewiseLinear(optimizer, "lr", [(0, args.lr), (args.n_epochs * len(train_loader), 0.0)])
trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)
# Prepare metrics - note how we compute distributed metrics
RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
metrics = {"nll": Loss(torch.nn.CrossEntropyLoss(ignore_index=-100), output_transform=lambda x: (x[0][0], x[1][0])),
"accuracy": Accuracy(output_transform=lambda x: (x[0][1], x[1][1]))}
metrics.update({"average_nll": MetricsLambda(average_distributed_scalar, metrics["nll"], args),
"average_accuracy": MetricsLambda(average_distributed_scalar, metrics["accuracy"], args)})
metrics["average_ppl"] = MetricsLambda(math.exp, metrics["average_nll"])
for name, metric in metrics.items():
metric.attach(evaluator, name)
# On the main process: add progress bar, tensorboard, checkpoints and save model, configuration and tokenizer before we start to train
if args.local_rank in [-1, 0]:
pbar = ProgressBar(persist=True)
pbar.attach(trainer, metric_names=["loss"])
evaluator.add_event_handler(Events.COMPLETED, lambda _: pbar.log_message("Validation: %s" % pformat(evaluator.state.metrics)))
log_dir = make_logdir(args.model_checkpoint)
tb_logger = TensorboardLogger(log_dir)
tb_logger.attach(trainer, log_handler=OutputHandler(tag="training", metric_names=["loss"]), event_name=Events.ITERATION_COMPLETED)
tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED)
tb_logger.attach(evaluator, log_handler=OutputHandler(tag="validation", metric_names=list(metrics.keys()), global_step_transform=global_step_from_engine(trainer)), event_name=Events.EPOCH_COMPLETED)
logger.info("log_dir: ", log_dir)
checkpoint_handler = ModelCheckpoint(log_dir, 'checkpoint', n_saved=3)
trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': getattr(model, 'module', model)}) # "getattr" takes care of distributed encapsulation
torch.save(args, log_dir + '/model_training_args.bin')
getattr(model, 'module', model).config.to_json_file(os.path.join(log_dir, CONFIG_NAME))
tokenizer.save_pretrained(log_dir)
# Run the training
trainer.run(train_loader, max_epochs=args.n_epochs)
# On the main process: close tensorboard logger and rename the last checkpoint (for easy re-loading with OpenAIGPTModel.from_pretrained method)
if args.local_rank in [-1, 0] and args.n_epochs > 0:
os.rename(os.path.join(log_dir, checkpoint_handler._saved[-1][1]), os.path.join(log_dir, WEIGHTS_NAME)) # TODO: PR in ignite to have better access to saved file paths (cleaner)
tb_logger.close()
if __name__ == "__main__":
train()