forked from Moutix/idmef_parser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrfc5070.txt
5154 lines (3566 loc) · 168 KB
/
rfc5070.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Network Working Group R. Danyliw
Request for Comments: 5070 CERT
Category: Standards Track J. Meijer
UNINETT
Y. Demchenko
University of Amsterdam
December 2007
The Incident Object Description Exchange Format
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
The Incident Object Description Exchange Format (IODEF) defines a
data representation that provides a framework for sharing information
commonly exchanged by Computer Security Incident Response Teams
(CSIRTs) about computer security incidents. This document describes
the information model for the IODEF and provides an associated data
model specified with XML Schema.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 5
1.2. Notations . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3. About the IODEF Data Model . . . . . . . . . . . . . . . . 5
1.4. About the IODEF Implementation . . . . . . . . . . . . . . 6
2. IODEF Data Types . . . . . . . . . . . . . . . . . . . . . . . 6
2.1. Integers . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Real Numbers . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Characters and Strings . . . . . . . . . . . . . . . . . . 7
2.4. Multilingual Strings . . . . . . . . . . . . . . . . . . . 7
2.5. Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6. Hexadecimal Bytes . . . . . . . . . . . . . . . . . . . . 7
2.7. Enumerated Types . . . . . . . . . . . . . . . . . . . . . 8
2.8. Date-Time Strings . . . . . . . . . . . . . . . . . . . . 8
Danyliw, et al. Standards Track [Page 1]
RFC 5070 IODEF December 2007
2.9. Timezone String . . . . . . . . . . . . . . . . . . . . . 8
2.10. Port Lists . . . . . . . . . . . . . . . . . . . . . . . . 8
2.11. Postal Address . . . . . . . . . . . . . . . . . . . . . . 9
2.12. Person or Organization . . . . . . . . . . . . . . . . . . 9
2.13. Telephone and Fax Numbers . . . . . . . . . . . . . . . . 9
2.14. Email String . . . . . . . . . . . . . . . . . . . . . . . 9
2.15. Uniform Resource Locator strings . . . . . . . . . . . . . 9
3. The IODEF Data Model . . . . . . . . . . . . . . . . . . . . . 9
3.1. IODEF-Document Class . . . . . . . . . . . . . . . . . . . 10
3.2. Incident Class . . . . . . . . . . . . . . . . . . . . . . 10
3.3. IncidentID Class . . . . . . . . . . . . . . . . . . . . . 14
3.4. AlternativeID Class . . . . . . . . . . . . . . . . . . . 14
3.5. RelatedActivity Class . . . . . . . . . . . . . . . . . . 15
3.6. AdditionalData Class . . . . . . . . . . . . . . . . . . . 16
3.7. Contact Class . . . . . . . . . . . . . . . . . . . . . . 18
3.7.1. RegistryHandle Class . . . . . . . . . . . . . . . . . 21
3.7.2. PostalAddress Class . . . . . . . . . . . . . . . . . 22
3.7.3. Email Class . . . . . . . . . . . . . . . . . . . . . 22
3.7.4. Telephone and Fax Classes . . . . . . . . . . . . . . 23
3.8. Time Classes . . . . . . . . . . . . . . . . . . . . . . . 23
3.8.1. StartTime . . . . . . . . . . . . . . . . . . . . . . 24
3.8.2. EndTime . . . . . . . . . . . . . . . . . . . . . . . 24
3.8.3. DetectTime . . . . . . . . . . . . . . . . . . . . . . 24
3.8.4. ReportTime . . . . . . . . . . . . . . . . . . . . . . 24
3.8.5. DateTime . . . . . . . . . . . . . . . . . . . . . . . 24
3.9. Method Class . . . . . . . . . . . . . . . . . . . . . . . 24
3.9.1. Reference Class . . . . . . . . . . . . . . . . . . . 25
3.10. Assessment Class . . . . . . . . . . . . . . . . . . . . . 25
3.10.1. Impact Class . . . . . . . . . . . . . . . . . . . . . 27
3.10.2. TimeImpact Class . . . . . . . . . . . . . . . . . . . 29
3.10.3. MonetaryImpact Class . . . . . . . . . . . . . . . . . 30
3.10.4. Confidence Class . . . . . . . . . . . . . . . . . . . 31
3.11. History Class . . . . . . . . . . . . . . . . . . . . . . 32
3.11.1. HistoryItem Class . . . . . . . . . . . . . . . . . . 33
3.12. EventData Class . . . . . . . . . . . . . . . . . . . . . 34
3.12.1. Relating the Incident and EventData Classes . . . . . 36
3.12.2. Cardinality of EventData . . . . . . . . . . . . . . . 37
3.13. Expectation Class . . . . . . . . . . . . . . . . . . . . 37
3.14. Flow Class . . . . . . . . . . . . . . . . . . . . . . . . 40
3.15. System Class . . . . . . . . . . . . . . . . . . . . . . . 40
3.16. Node Class . . . . . . . . . . . . . . . . . . . . . . . . 42
3.16.1. Counter Class . . . . . . . . . . . . . . . . . . . . 43
3.16.2. Address Class . . . . . . . . . . . . . . . . . . . . 45
3.16.3. NodeRole Class . . . . . . . . . . . . . . . . . . . . 46
3.17. Service Class . . . . . . . . . . . . . . . . . . . . . . 48
3.17.1. Application Class . . . . . . . . . . . . . . . . . . 50
3.18. OperatingSystem Class . . . . . . . . . . . . . . . . . . 51
3.19. Record Class . . . . . . . . . . . . . . . . . . . . . . . 51
Danyliw, et al. Standards Track [Page 2]
RFC 5070 IODEF December 2007
3.19.1. RecordData Class . . . . . . . . . . . . . . . . . . . 51
3.19.2. RecordPattern Class . . . . . . . . . . . . . . . . . 53
3.19.3. RecordItem Class . . . . . . . . . . . . . . . . . . . 54
4. Processing Considerations . . . . . . . . . . . . . . . . . . 54
4.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2. IODEF Namespace . . . . . . . . . . . . . . . . . . . . . 55
4.3. Validation . . . . . . . . . . . . . . . . . . . . . . . . 55
5. Extending the IODEF . . . . . . . . . . . . . . . . . . . . . 56
5.1. Extending the Enumerated Values of Attributes . . . . . . 56
5.2. Extending Classes . . . . . . . . . . . . . . . . . . . . 57
6. Internationalization Issues . . . . . . . . . . . . . . . . . 59
7. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.1. Worm . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2. Reconnaissance . . . . . . . . . . . . . . . . . . . . . . 61
7.3. Bot-Net Reporting . . . . . . . . . . . . . . . . . . . . 63
7.4. Watch List . . . . . . . . . . . . . . . . . . . . . . . . 65
8. The IODEF Schema . . . . . . . . . . . . . . . . . . . . . . . 66
9. Security Considerations . . . . . . . . . . . . . . . . . . . 87
10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 88
11. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 88
12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 89
12.1. Normative References . . . . . . . . . . . . . . . . . . . 89
12.2. Informative References . . . . . . . . . . . . . . . . . . 90
Danyliw, et al. Standards Track [Page 3]
RFC 5070 IODEF December 2007
1. Introduction
Organizations require help from other parties to mitigate malicious
activity targeting their network and to gain insight into potential
threats. This coordination might entail working with an ISP to
filter attack traffic, contacting a remote site to take down a bot-
network, or sharing watch-lists of known malicious IP addresses in a
consortium.
The Incident Object Description Exchange Format (IODEF) is a format
for representing computer security information commonly exchanged
between Computer Security Incident Response Teams (CSIRTs). It
provides an XML representation for conveying incident information
across administrative domains between parties that have an
operational responsibility of remediation or a watch-and-warning over
a defined constituency. The data model encodes information about
hosts, networks, and the services running on these systems; attack
methodology and associated forensic evidence; impact of the activity;
and limited approaches for documenting workflow.
The overriding purpose of the IODEF is to enhance the operational
capabilities of CSIRTs. Community adoption of the IODEF provides an
improved ability to resolve incidents and convey situational
awareness by simplifying collaboration and data sharing. This
structured format provided by the IODEF allows for:
o increased automation in processing of incident data, since the
resources of security analysts to parse free-form textual
documents will be reduced;
o decreased effort in normalizing similar data (even when highly
structured) from different sources; and
o a common format on which to build interoperable tools for incident
handling and subsequent analysis, specifically when data comes
from multiple constituencies.
Coordinating with other CSIRTs is not strictly a technical problem.
There are numerous procedural, trust, and legal considerations that
might prevent an organization from sharing information. The IODEF
does not attempt to address them. However, operational
implementations of the IODEF will need to consider this broader
context.
Sections 3 and 8 specify the IODEF data model with text and an XML
schema. The types used by the data model are covered in Section 2.
Processing considerations, the handling of extensions, and
internationalization issues related to the data model are covered in
Danyliw, et al. Standards Track [Page 4]
RFC 5070 IODEF December 2007
Sections 4, 5, and 6, respectively. Examples are listed in Section
7. Section 1 provides the background for the IODEF, and Section 9
documents the security considerations.
1.1. Terminology
The key words "MUST," "MUST NOT," "REQUIRED," "SHALL," "SHALL NOT,"
"SHOULD," "SHOULD NOT," "RECOMMENDED," "MAY," and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [6].
Definitions for some of the common computer security-related
terminology used in this document can be found in Section 2 of [16].
1.2. Notations
The normative IODEF data model is specified with the text in Section
3 and the XML schema in Section 8. To help in the understanding of
the data elements, Section 3 also depicts the underlying information
model using Unified Modeling Language (UML). This abstract
presentation of the IODEF is not normative.
For clarity in this document, the term "XML document" will be used
when referring generically to any instance of an XML document. The
term "IODEF document" will be used to refer to specific elements and
attributes of the IODEF schema. The terms "class" and "element" will
be used interchangeably to reference either the corresponding data
element in the information or data models, respectively.
1.3. About the IODEF Data Model
The IODEF data model is a data representation that provides a
framework for sharing information commonly exchanged by CSIRTs about
computer security incidents. A number of considerations were made in
the design of the data model.
o The data model serves as a transport format. Therefore, its
specific representation is not the optimal representation for on-
disk storage, long-term archiving, or in-memory processing.
o As there is no precise widely agreed upon definition for an
incident, the data model does not attempt to dictate one through
its implementation. Rather, a broad understanding is assumed in
the IODEF that is flexible enough to encompass most operators.
o Describing an incident for all definitions would require an
extremely complex data model. Therefore, the IODEF only intends
to be a framework to convey commonly exchanged incident
information. It ensures that there are ample mechanisms for
Danyliw, et al. Standards Track [Page 5]
RFC 5070 IODEF December 2007
extensibility to support organization-specific information, and
techniques to reference information kept outside of the explicit
data model.
o The domain of security analysis is not fully standardized and must
rely on free-form textual descriptions. The IODEF attempts to
strike a balance between supporting this free-form content, while
still allowing automated processing of incident information.
o The IODEF is only one of several security relevant data
representations being standardized. Attempts were made to ensure
they were complimentary. The data model of the Intrusion
Detection Message Exchange Format [17] influenced the design of
the IODEF.
Further discussion of the desirable properties for the IODEF can be
found in the Requirements for the Format for Incident Information
Exchange (FINE) [16].
1.4. About the IODEF Implementation
The IODEF implementation is specified as an Extensible Markup
Language (XML) [1] Schema [2] in Section 8.
Implementing the IODEF in XML provides numerous advantages. Its
extensibility makes it ideal for specifying a data encoding framework
that supports various character encodings. Likewise, the abundance
of related technologies (e.g., XSL, XPath, XML-Signature) makes for
simplified manipulation. However, XML is fundamentally a text
representation, which makes it inherently inefficient when binary
data must be embedded or large volumes of data must be exchanged.
2. IODEF Data Types
The various data elements of the IODEF data model are typed. This
section discusses these data types. When possible, native Schema
data types were adopted, but for more complicated formats, regular
expressions (see Appendix F of [3]) or external standards were used.
2.1. Integers
An integer is represented by the INTEGER data type. Integer data
MUST be encoded in Base 10.
The INTEGER data type is implemented as an "xs:integer" [3] in the
schema.
Danyliw, et al. Standards Track [Page 6]
RFC 5070 IODEF December 2007
2.2. Real Numbers
Real (floating-point) attributes are represented by the REAL data
type. Real data MUST be encoded in Base 10.
The REAL data type is implemented as an "xs:float" [3] in the schema.
2.3. Characters and Strings
A single character is represented by the CHARACTER data type. A
character string is represented by the STRING data type. Special
characters must be encoded using entity references. See Section 4.1.
The CHARACTER and STRING data types are implement as an "xs:string"
[3] in the schema.
2.4. Multilingual Strings
STRING data that represents multi-character attributes in a language
different than the default encoding of the document is of the
ML_STRING data type.
The ML_STRING data type is implemented as an "iodef:MLStringType" in
the schema.
2.5. Bytes
A binary octet is represented by the BYTE data type. A sequence of
binary octets is represented by the BYTE[] data type. These octets
are encoded using base64.
The BYTE data type is implemented as an "xs:base64Binary" [3] in the
schema.
2.6. Hexadecimal Bytes
A binary octet is represented by the HEXBIN (and HEXBIN[]) data type.
This octet is encoded as a character tuple consisting of two
hexadecimal digits.
The HEXBIN data type is implemented as an "xs:hexBinary" [3] in the
schema.
Danyliw, et al. Standards Track [Page 7]
RFC 5070 IODEF December 2007
2.7. Enumerated Types
Enumerated types are represented by the ENUM data type, and consist
of an ordered list of acceptable values. Each value has a
representative keyword. Within the IODEF schema, the enumerated type
keywords are used as attribute values.
The ENUM data type is implemented as a series of "xs:NMTOKEN" in the
schema.
2.8. Date-Time Strings
Date-time strings are represented by the DATETIME data type. Each
date-time string identifies a particular instant in time; ranges are
not supported.
Date-time strings are formatted according to a subset of ISO 8601:
2000 [13] documented in RFC 3339 [12].
The DATETIME data type is implemented as an "xs:dateTime" [3] in the
schema.
2.9. Timezone String
A timezone offset from UTC is represented by the TIMEZONE data type.
It is formatted according to the following regular expression:
"Z|[\+\-](0[0-9]|1[0-4]):[0-5][0-9]".
The TIMEZONE data type is implemented as an "xs:string" with a
regular expression constraint in the schema. This regular expression
is identical to the timezone representation implemented in an "xs:
dateTime".
2.10. Port Lists
A list of network ports are represented by the PORTLIST data type. A
PORTLIST consists of a comma-separated list of numbers and ranges
(N-M means ports N through M, inclusive). It is formatted according
to the following regular expression: "\d+(\-\d+)?(,\d+(\-\d+)?)*".
For example, "2,5-15,30,32,40-50,55-60".
The PORTLIST data type is implemented as an "xs:string" with a
regular expression constraint in the schema.
Danyliw, et al. Standards Track [Page 8]
RFC 5070 IODEF December 2007
2.11. Postal Address
A postal address is represented by the POSTAL data type. This data
type is an ML_STRING whose format is documented in Section 2.23 of
RFC 4519 [10]. It defines a postal address as a free-form multi-line
string separated by the "$" character.
The POSTAL data type is implemented as an "xs:string" in the schema.
2.12. Person or Organization
The name of an individual or organization is represented by the NAME
data type. This data type is an ML_STRING whose format is documented
in Section 2.3 of RFC 4519 [10].
The NAME data type is implemented as an "xs:string" in the schema.
2.13. Telephone and Fax Numbers
A telephone or fax number is represented by the PHONE data type. The
format of the PHONE data type is documented in Section 2.35 of RFC
4519 [10].
The PHONE data type is implemented as an "xs:string" in the schema.
2.14. Email String
An email address is represented by the EMAIL data type. The format
of the EMAIL data type is documented in Section 3.4.1 RFC 2822 [11]
The EMAIL data type is implemented as an "xs:string" in the schema.
2.15. Uniform Resource Locator strings
A uniform resource locator (URL) is represented by the URL data type.
The format of the URL data type is documented in RFC 2396 [8].
The URL data type is implemented as an "xs:anyURI" in the schema.
3. The IODEF Data Model
In this section, the individual components of the IODEF data model
will be discussed in detail. For each class, the semantics will be
described and the relationship with other classes will be depicted
with UML. When necessary, specific comments will be made about
corresponding definition in the schema in Section 8
Danyliw, et al. Standards Track [Page 9]
RFC 5070 IODEF December 2007
3.1. IODEF-Document Class
The IODEF-Document class is the top level class in the IODEF data
model. All IODEF documents are an instance of this class.
+-----------------+
| IODEF-Document |
+-----------------+
| STRING version |<>--{1..*}--[ Incident ]
| ENUM lang |
| STRING formatid |
+-----------------+
Figure 1: IODEF-Document Class
The aggregate class that constitute IODEF-Document is:
Incident
One or more. The information related to a single incident.
The IODEF-Document class has three attributes:
version
Required. STRING. The IODEF specification version number to
which this IODEF document conforms. The value of this attribute
MUST be "1.00"
lang
Required. ENUM. A valid language code per RFC 4646 [7]
constrained by the definition of "xs:language". The
interpretation of this code is described in Section 6.
formatid
Optional. STRING. A free-form string to convey processing
instructions to the recipient of the document. Its semantics must
be negotiated out-of-band.
3.2. Incident Class
Every incident is represented by an instance of the Incident class.
This class provides a standardized representation for commonly
exchanged incident data.
Danyliw, et al. Standards Track [Page 10]
RFC 5070 IODEF December 2007
+--------------------+
| Incident |
+--------------------+
| ENUM purpose |<>----------[ IncidentID ]
| STRING ext-purpose |<>--{0..1}--[ AlternativeID ]
| ENUM lang |<>--{0..1}--[ RelatedActivity ]
| ENUM restriction |<>--{0..1}--[ DetectTime ]
| |<>--{0..1}--[ StartTime ]
| |<>--{0..1}--[ EndTime ]
| |<>----------[ ReportTime ]
| |<>--{0..*}--[ Description ]
| |<>--{1..*}--[ Assessment ]
| |<>--{0..*}--[ Method ]
| |<>--{1..*}--[ Contact ]
| |<>--{0..*}--[ EventData ]
| |<>--{0..1}--[ History ]
| |<>--{0..*}--[ AdditionalData ]
+--------------------+
Figure 2: The Incident Class
The aggregate classes that constitute Incident are:
IncidentID
One. An incident tracking number assigned to this incident by the
CSIRT that generated the IODEF document.
AlternativeID
Zero or one. The incident tracking numbers used by other CSIRTs
to refer to the incident described in the document.
RelatedActivity
Zero or one. The incident tracking numbers of related incidents.
DetectTime
Zero or one. The time the incident was first detected.
StartTime
Zero or one. The time the incident started.
EndTime
Zero or one. The time the incident ended.
ReportTime
One. The time the incident was reported.
Danyliw, et al. Standards Track [Page 11]
RFC 5070 IODEF December 2007
Description
Zero or more. ML_STRING. A free-form textual description of the
incident.
Assessment
One or more. A characterization of the impact of the incident.
Method
Zero or more. The techniques used by the intruder in the
incident.
Contact
One or more. Contact information for the parties involved in the
incident.
EventData
Zero or more. Description of the events comprising the incident.
History
Zero or one. A log of significant events or actions that occurred
during the course of handling the incident.
AdditionalData
Zero or more. Mechanism by which to extend the data model.
The Incident class has four attributes:
purpose
Required. ENUM. The purpose attribute represents the reason why
the IODEF document was created. It is closely related to the
Expectation class (Section 3.13). This attribute is defined as an
enumerated list:
1. traceback. The document was sent for trace-back purposes.
2. mitigation. The document was sent to request aid in
mitigating the described activity.
3. reporting. The document was sent to comply with reporting
requirements.
4. other. The document was sent for purposes specified in the
Expectation class.
5. ext-value. An escape value used to extend this attribute.
See Section 5.1.
Danyliw, et al. Standards Track [Page 12]
RFC 5070 IODEF December 2007
ext-purpose
Optional. STRING. A means by which to extend the purpose
attribute. See Section 5.1.
lang
Optional. ENUM. A valid language code per RFC 4646 [7]
constrained by the definition of "xs:language". The
interpretation of this code is described in Section 6.
restriction
Optional. ENUM. This attribute indicates the disclosure
guidelines to which the sender expects the recipient to adhere for
the information represented in this class and its children. This
guideline provides no security since there are no specified
technical means to ensure that the recipient of the document
handles the information as the sender requested.
The value of this attribute is logically inherited by the children
of this class. That is to say, the disclosure rules applied to
this class, also apply to its children.
It is possible to set a granular disclosure policy, since all of
the high-level classes (i.e., children of the Incident class) have
a restriction attribute. Therefore, a child can override the
guidelines of a parent class, be it to restrict or relax the
disclosure rules (e.g., a child has a weaker policy than an
ancestor; or an ancestor has a weak policy, and the children
selectively apply more rigid controls). The implicit value of the
restriction attribute for a class that did not specify one can be
found in the closest ancestor that did specify a value.
This attribute is defined as an enumerated value with a default
value of "private". Note that the default value of the
restriction attribute is only defined in the context of the
Incident class. In other classes where this attribute is used, no
default is specified.
1. public. There are no restrictions placed in the information.
2. need-to-know. The information may be shared with other
parties that are involved in the incident as determined by the
recipient of this document (e.g., multiple victim sites can be
informed of each other).
3. private. The information may not be shared.
Danyliw, et al. Standards Track [Page 13]
RFC 5070 IODEF December 2007
4. default. The information can be shared according to an
information disclosure policy pre-arranged by the
communicating parties.
3.3. IncidentID Class
The IncidentID class represents an incident tracking number that is
unique in the context of the CSIRT and identifies the activity
characterized in an IODEF Document. This identifier would serve as
an index into the CSIRT incident handling system. The combination of
the name attribute and the string in the element content MUST be a
globally unique identifier describing the activity. Documents
generated by a given CSIRT MUST NOT reuse the same value unless they
are referencing the same incident.
+------------------+
| IncidentID |
+------------------+
| STRING |
| |
| STRING name |
| STRING instance |
| ENUM restriction |
+------------------+
Figure 3: The IncidentID Class
The IncidentID class has three attributes:
name
Required. STRING. An identifier describing the CSIRT that
created the document. In order to have a globally unique CSIRT
name, the fully qualified domain name associated with the CSIRT
MUST be used.
instance
Optional. STRING. An identifier referencing a subset of the
named incident.
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.
3.4. AlternativeID Class
The AlternativeID class lists the incident tracking numbers used by
CSIRTs, other than the one generating the document, to refer to the
identical activity described the IODEF document. A tracking number
listed as an AlternativeID references the same incident detected by
Danyliw, et al. Standards Track [Page 14]
RFC 5070 IODEF December 2007
another CSIRT. The incident tracking numbers of the CSIRT that
generated the IODEF document should never be considered an
AlternativeID.
+------------------+
| AlternativeID |
+------------------+
| ENUM restriction |<>--{1..*}--[ IncidentID ]
| |
+------------------+
Figure 4: The AlternativeID Class
The aggregate class that constitutes AlternativeID is:
IncidentID
One or more. The incident tracking number of another CSIRT.
The AlternativeID class has one attribute:
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.
3.5. RelatedActivity Class
The RelatedActivity class lists either incident tracking numbers of
incidents or URLs (not both) that refer to activity related to the
one described in the IODEF document. These references may be to
local incident tracking numbers or to those of other CSIRTs.
The specifics of how a CSIRT comes to believe that two incidents are
related are considered out of scope.
+------------------+
| RelatedActivity |
+------------------+
| ENUM restriction |<>--{0..*}--[ IncidentID ]
| |<>--{0..*}--[ URL ]
+------------------+
Figure 5: RelatedActivity Class
Danyliw, et al. Standards Track [Page 15]
RFC 5070 IODEF December 2007
The aggregate classes that constitutes RelatedActivity are:
IncidentID
One or more. The incident tracking number of a related incident.
URL
One or more. URL. A URL to activity related to this incident.
The RelatedActivity class has one attribute:
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.
3.6. AdditionalData Class
The AdditionalData class serves as an extension mechanism for
information not otherwise represented in the data model. For
relatively simple information, atomic data types (e.g., integers,
strings) are provided with a mechanism to annotate their meaning.
The class can also be used to extend the data model (and the
associated Schema) to support proprietary extensions by encapsulating
entire XML documents conforming to another Schema (e.g., IDMEF). A
detailed discussion for extending the data model and the schema can
be found in Section 5.
Unlike XML, which is self-describing, atomic data must be documented
to convey its meaning. This information is described in the
'meaning' attribute. Since these description are outside the scope
of the specification, some additional coordination may be required to
ensure that a recipient of a document using the AdditionalData
classes can make sense of the custom extensions.
+------------------+
| AdditionalData |
+------------------+
| ANY |
| |
| ENUM dtype |
| STRING ext-dtype |
| STRING meaning |
| STRING formatid |
| ENUM restriction |
+------------------+
Figure 6: The AdditionalData Class
Danyliw, et al. Standards Track [Page 16]
RFC 5070 IODEF December 2007
The AdditionalData class has five attributes:
dtype
Required. ENUM. The data type of the element content. The
permitted values for this attribute are shown below. The default
value is "string".
1. boolean. The element content is of type BOOLEAN.
2. byte. The element content is of type BYTE.
3. character. The element content is of type CHARACTER.
4. date-time. The element content is of type DATETIME.
5. integer. The element content is of type INTEGER.
6. portlist. The element content is of type PORTLIST.
7. real. The element content is of type REAL.
8. string. The element content is of type STRING.
9. file. The element content is a base64 encoded binary file
encoded as a BYTE[] type.
10. frame. The element content is a layer-2 frame encoded as a
HEXBIN type.
11. packet. The element content is a layer-3 packet encoded as a
HEXBIN type.
12. ipv4-packet. The element content is an IPv4 packet encoded
as a HEXBIN type.
13. ipv6-packet. The element content is an IPv6 packet encoded
as a HEXBIN type.
14. path. The element content is a file-system path encoded as a
STRING type.
15. url. The element content is of type URL.
16. csv. The element content is a common separated value (CSV)
list per Section 2 of [20] encoded as a STRING type.
17. winreg. The element content is a Windows registry key
encoded as a STRING type.
Danyliw, et al. Standards Track [Page 17]
RFC 5070 IODEF December 2007
18. xml. The element content is XML (see Section 5).
19. ext-value. An escape value used to extend this attribute.
See Section 5.1.
ext-dtype
Optional. STRING. A means by which to extend the dtype
attribute. See Section 5.1.
meaning
Optional. STRING. A free-form description of the element
content.
formatid
Optional. STRING. An identifier referencing the format and
semantics of the element content.
restriction
Optional. ENUM. This attribute has been defined in Section 3.2.
3.7. Contact Class
The Contact class describes contact information for organizations and
personnel involved in the incident. This class allows for the naming
of the involved party, specifying contact information for them, and
identifying their role in the incident.
People and organizations are treated interchangeably as contacts; one
can be associated with the other using the recursive definition of
the class (the Contact class is aggregated into the Contact class).
The 'type' attribute disambiguates the type of contact information
being provided.
The inheriting definition of Contact provides a way to relate
information without requiring the explicit use of identifiers in the
classes or duplication of data. A complete point of contact is
derived by a particular traversal from the root Contact class to the
leaf Contact class. As such, multiple points of contact might be
specified in a single instance of a Contact class. Each child
Contact class logically inherits contact information from its
ancestors.