-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
130 lines (98 loc) · 4.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from tokenizer import Tokenizer
from transformer_model import DumbleLLM
from config import TrainingConfig
from data_loader import Dataset
from logger import Logger
import torch
from tqdm import tqdm
import os
TRAINING_DATA = 'data/input.txt'
MODEL_WEIGHTS_DIR = "saved"
LOGGING_DIR = "saved"
if __name__ == '__main__':
os.makedirs(MODEL_WEIGHTS_DIR, exist_ok=True)
torch.manual_seed(100)
torch.cuda.manual_seed(100)
config = TrainingConfig()
tokenizer = Tokenizer(input_file=TRAINING_DATA, vocab_size=config.vocab_size, retrain=True)
logger = Logger(path=LOGGING_DIR)
dataset = Dataset(TRAINING_DATA, tokenizer, config.batch_size, config.context_length)
train_set, test_set = torch.utils.data.random_split(dataset, [0.8, 0.2])
train_dataloader = torch.utils.data.DataLoader(
train_set,
batch_size=config.micro_batch_size,
shuffle=True,
drop_last=True
)
test_dataloader = torch.utils.data.DataLoader(
test_set,
batch_size=config.micro_batch_size,
shuffle=False,
drop_last=True
)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
model = DumbleLLM(config, tokenizer)
model.to(config.device)
#checkpoint = torch.load(f"{MODEL_WEIGHTS_DIR}/state.pt", weights_only=True)
#model.load_state_dict(checkpoint['model_state_dict'])
model = torch.compile(model)
print(f"model parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
# TODO: add LRScheduler, weight decay
optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4)
#optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
n_grad_accum_steps = config.batch_size // config.micro_batch_size
for epoch in range(config.n_epochs):
train_loss_sum = 0
for idx, (token, targets) in enumerate(train_dataloader):
token, targets = token.to(config.device), targets.to(config.device)
model.train()
with torch.autocast(device_type=config.device, dtype=torch.bfloat16):
logits, loss = model(token, targets)
train_loss_sum += loss.detach()
loss.backward()
# accumulate gradients
if (idx+1) % n_grad_accum_steps == 0 or (idx+1 == len(train_dataloader)): # optimize after one full batch was processed
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
optimizer.zero_grad()
print(f"step {idx+1}, training loss after {n_grad_accum_steps} grad accum. steps: {loss.item():.2f} norm: {norm:.4f}")
logger.log_train_loss(epoch+1, idx, loss.item(), config.batch_size)
# calculate test loss after each epoch
with torch.inference_mode():
model.eval()
test_loss_sum = 0
for test_token, test_targets in test_dataloader:
test_token, test_targets = test_token.to(config.device), test_targets.to(config.device)
with torch.autocast(device_type=config.device, dtype=torch.bfloat16):
_, test_loss = model(test_token, test_targets)
test_loss_sum += test_loss
avg_test_loss = (test_loss_sum / len(test_dataloader)).item()
print(f"epoch: {epoch+1}/{config.n_epochs} AVG TEST LOSS: {avg_test_loss:.2f}")
avg_train_loss = (train_loss_sum / len(train_dataloader)).item()
print(f"EPOCH {epoch+1}/{config.n_epochs} AVERAGE TRAIN LOSS: {avg_train_loss:.2f}")
logger.log_loss_epoch(epoch+1, avg_train_loss, avg_test_loss)
# save current model
torch.save({
'epoch': epoch+1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'train_loss': (train_loss_sum / len(train_dataloader)),
'test_loss': (test_loss_sum / len(test_dataloader))
}, f"{MODEL_WEIGHTS_DIR}/state.pt")
# generate text
print("STARTING TEXT GENERATION")
model.eval()
with torch.inference_mode():
prompts = ["Harry saw that ", "Dumbledore "]
results = model.generate(prompts, max_length=config.context_length, strategy="top_p")
for idx, res in enumerate(results):
print(f"PROMPT {idx+1}:")
print(res)
print("=============================================")
for prompt, result in zip(prompts, results):
logger.log_prompt(epoch+1, prompt, result)
logger.save_to_file()
# TODO: HellaSwag, Perplexity
# TODO: README