forked from irfani/Jenis-Kelamin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjenis-kelamin.py
132 lines (112 loc) · 4.94 KB
/
jenis-kelamin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import sys, argparse, pickle, os
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline
import pandas as pd
import numpy as np
# main
def main(args):
if(args.ml == 'LG'):
result = predict_lg(args.name, args.train)
ml_type = 'Logistic Regression'
elif(args.ml == 'RF'):
result = predict_rf(args.name, args.train)
ml_type = 'Random Forest'
else:
result = predict_nb(args.name, args.train)
ml_type = 'Naive Bayes'
print ("Prediksi jenis kelamin dengan", ml_type, ":")
jk_label = {1:"Pria", 0:"Wanita"}
print(args.name, ' : ', jk_label[result])
# load dataset
def load_data(dataset="./data/data-pemilih-kpu.csv"):
df = pd.read_csv(dataset, encoding = 'utf-8-sig')
df = df.dropna(how='all')
jk_map = {"Laki-Laki" : 1, "Perempuan" : 0}
df["jenis_kelamin"] = df["jenis_kelamin"].map(jk_map)
feature_col_names = ["nama"]
predicted_class_names = ["jenis_kelamin"]
X = df[feature_col_names].values
y = df[predicted_class_names].values
#split train:test data 70:30
split_test_size = 0.30
text_train, text_test, y_train, y_test = train_test_split(X, y, test_size=split_test_size, stratify=y, random_state=42)
return (text_train, text_test, y_train, y_test)
# Naive Bayes implementation
def predict_nb(name, dataset):
if os.path.isfile("./data/pipe_nb.pkl") and dataset is None:
file_nb = open('./data/pipe_nb.pkl', 'rb')
pipe_nb = pickle.load(file_nb)
else:
file_nb = open('./data/pipe_nb.pkl', 'wb')
pipe_nb = Pipeline([('vect', CountVectorizer(analyzer = 'char_wb', ngram_range=(2,6))),
('tfidf', TfidfTransformer()),
('clf', MultinomialNB())])
#train and dump to file
dataset = load_data(dataset)
pipe_nb = pipe_nb.fit(dataset[0].ravel(), dataset[2].ravel())
pickle.dump(pipe_nb, file_nb)
#Akurasi
predicted = pipe_nb.predict(dataset[1].ravel())
Akurasi = np.mean(predicted == dataset[3].ravel())*100
print("Akurasi :", Akurasi, "%")
return pipe_nb.predict([name])[0]
# Logistic Regression implementation
def predict_lg(name, dataset):
if os.path.isfile("./data/pipe_lg.pkl") and dataset is None:
file_lg = open('./data/pipe_lg.pkl', 'rb')
pipe_lg = pickle.load(file_lg)
else:
file_lg = open('./data/pipe_lg.pkl', 'wb')
pipe_lg = Pipeline([('vect', CountVectorizer(analyzer = 'char_wb', ngram_range=(2,6))),
('tfidf', TfidfTransformer()),
('clf', LogisticRegression())])
dataset = load_data(dataset)
pipe_lg = pipe_lg.fit(dataset[0].ravel(), dataset[2].ravel())
pickle.dump(pipe_lg, file_lg)
#Akurasi
predicted = pipe_lg.predict(dataset[1].ravel())
Akurasi = np.mean(predicted == dataset[3].ravel())*100
print("Akurasi :", Akurasi, "%")
return pipe_lg.predict([name])[0]
# Random Forest implementation
def predict_rf(name, dataset):
if os.path.isfile("./data/pipe_rf.pkl") and dataset is None:
file_rf = open('./data/pipe_rf.pkl', 'rb')
pipe_rf = pickle.load(file_rf)
else:
file_rf = open('./data/pipe_rf.pkl', 'wb')
pipe_rf = Pipeline([('vect', CountVectorizer(analyzer = 'char_wb', ngram_range=(2,6))),
('tfidf', TfidfTransformer()),
('clf', RandomForestClassifier(n_estimators=10, n_jobs=-1))])
dataset = load_data(dataset)
pipe_rf = pipe_rf.fit(dataset[0].ravel(), dataset[2].ravel())
pickle.dump(pipe_rf, file_rf)
#Akurasi
predicted = pipe_rf.predict(dataset[1].ravel())
Akurasi = np.mean(predicted == dataset[3].ravel())*100
print("Akurasi :", Akurasi, "%")
return pipe_rf.predict([name])[0]
# args setting
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = "Menentukan jenis kelamin berdasarkan nama Bahasa Indoensia")
parser.add_argument(
"name",
help = "Nama",
metavar='nama'
)
parser.add_argument(
"-ml",
help = "NB=Naive Bayes(default); LG=Logistic Regression; RF=Random Forest",
choices=["NB", "LG", "RF"]
)
parser.add_argument(
"-t",
"--train",
help="Training ulang dengan dataset yang ditentukan")
args = parser.parse_args()
main(args)