Skip to content

LovelyQuantum/EfficientNet_PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EfficientNet Pytorch

Have fun with your own data!

Quick Start

Install Package

pip install efficientnet_pytorch

Load Model

Load an EfficientNet:

from efficientnet_pytorch import EfficientNet
model = EfficientNet.from_name('efficientnet-b0')

Load a pretrained model:

from efficientnet_pytorch import EfficientNet
model = EfficientNet.from_pretrained('efficientnet-b0')

Details about the models are below:

Name # Params Top-1 Acc. Pretrained?
efficientnet-b0 5.3M 76.3
efficientnet-b1 7.8M 78.8
efficientnet-b2 9.2M 79.8
efficientnet-b3 12M 81.1
efficientnet-b4 19M 82.6
efficientnet-b5 30M 83.3
efficientnet-b6 43M 84.0
efficientnet-b7 66M 84.4

Run tests

python3 test.py --image test.png

Train on Own Data

Basic

First, you should make sure your dataset is in the following format. If not, you can try this repo to help you reform it.

dataset/
├── train
│   ├── class00 (class name, can be string like bird, dog etc.)
│   ├── class01
│   ├── class02
│   ├── class03
│   ├── class04
│   └── ...
└── val
    ├── class00 (class name, should correspond to class names in the train set)
    ├── class01
    ├── class02
    ├── class03
    ├── class04
    └── ...

Then, run as following:

python3 train train.py --dataset (your dataset path) --model_save_path (path to save model weights)

Example:

python3 train train.py --dataset ./dataset --model_save_path ./weights

Advanced

The train.py supports the following options:

Name Description Usage
--dataset your dataset path --dataset ./dataset
--model_save_path path to save model weights --model_save_path ./weights
--batch_size depend on your gpu memory size --batch_size 8
--pretrained whether to use pretrained model --pretrained
--num_epochs epochs to train --num_epochs 40
--model_name which model to train(list above) --model_name efficientnet-b7
--load_weight load your own weight as pretrained model --load_weight ./best.pth
--save_all_models whether to save all models --save_all_models
--quiet_mode whether to run in quiet mode --quiet_mode

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages