-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmain_run.py
213 lines (176 loc) · 11.6 KB
/
main_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from argparse import ArgumentParser
import os
from logadempirical.logdeep.tools.utils import seed_everything, save_parameters
from logadempirical.deeplog import run_deeplog
from logadempirical.loganomaly import run_loganomaly
from logadempirical.logrobust import run_logrobust
from logadempirical.cnn import run_cnn
from logadempirical.bert import run_logbert
from logadempirical.plelog import run_plelog
from logadempirical.neurallog import run_neuralog
from logadempirical.dataset import process_dataset, parse_log, sample_raw_data, process_instance
import sys
import time
sys.path.append("../../")
def arg_parser():
"""
add parser parameters
:return:
"""
parser = ArgumentParser()
parser.add_argument("--model_name", help="which model to train", choices=["logbert", "deeplog", "loganomaly",
"logrobust", "baseline", "neurallog",
"cnn", "autoencoder", "plelog"])
parser.add_argument("--dataset_name", help="which dataset to use", choices=["hdfs", "bgl", "tbird", "hdfs_2k",
"bgl_2k", "tdb", "spirit", "bo",
"bgl2", "hadoop"])
parser.add_argument("--device", help="hardware device", default="cuda")
parser.add_argument("--data_dir", default="./dataset/", metavar="DIR", help="data directory")
parser.add_argument("--output_dir", default="./experimental_results/RQ1/random/", metavar="DIR",
help="output directory")
parser.add_argument("--folder", default='bgl', metavar="DIR")
parser.add_argument('--log_file', help="log file name")
parser.add_argument("--sample_size", default=None, help="sample raw log")
parser.add_argument("--sample_log_file", default=None, help="if sampling raw logs, new log file name")
parser.add_argument("--parser_type", default=None, help="parse type drain or spell")
parser.add_argument("--log_format", default=None, help="log format",
metavar="<Date> <Time> <Pid> <Level> <Component>: <Content>")
parser.add_argument("--regex", default=[], type=list, help="regex to clean log messages")
parser.add_argument("--keep_para", action='store_true', help="keep parameters in log messages after parsing")
parser.add_argument("--st", default=0.3, type=float, help="similarity threshold")
parser.add_argument("--depth", default=3, type=int, help="depth of all leaf nodes")
parser.add_argument("--max_child", default=100, type=int, help="max children in each node")
parser.add_argument("--tau", default=0.5, type=float,
help="the percentage of tokens matched to merge a log message")
parser.add_argument("--is_process", action='store_true', help="if split train and test data")
parser.add_argument("--is_instance", action='store_true', help="if instances of log are available")
parser.add_argument("--train_file", default="train_fixed100_instances.pkl", help="train instances file name")
parser.add_argument("--test_file", default="test_fixed100_instances.pkl", help="test instances file name")
parser.add_argument("--window_type", type=str, choices=["sliding", "session"],
help="window for building log sequence")
parser.add_argument("--session_level", type=str, choices=["entry", "hour"],
help="window for building log sequence")
parser.add_argument('--window_size', default=5, type=float, help='window size(mins)')
parser.add_argument('--step_size', default=1, type=float, help='step size(mins)')
parser.add_argument('--train_size', default=0.4, type=float, help="train size", metavar="float or int")
parser.add_argument("--train_ratio", default=1, type=float)
parser.add_argument("--valid_ratio", default=0.1, type=float)
parser.add_argument("--test_ratio", default=1, type=float)
parser.add_argument("--max_epoch", default=200, type=int, help="epochs")
parser.add_argument("--n_epochs_stop", default=10, type=int,
help="training stops after n epochs without improvement")
parser.add_argument("--n_warm_up_epoch", default=10, type=int, help="save model parameters after n warm-up epoch")
parser.add_argument("--batch_size", default=32, type=int)
parser.add_argument("--lr", default=0.01, type=float, help="learning rate")
# features
parser.add_argument("--is_logkey", action='store_true', help="is logkey included in features")
parser.add_argument("--random_sample", action='store_true', help="is logkey included in features")
parser.add_argument("--is_time", action='store_true', help="is time duration included in features")
parser.add_argument("--min_freq", default=1, type=int, help="min frequency of logkey")
# logbert
parser.add_argument("--seq_len", default=10, type=int, help="max length of sequence")
parser.add_argument("--min_len", default=10, type=int, help="min length of sequence")
parser.add_argument("--max_len", default=512, type=int, help="for position embedding in bert")
parser.add_argument("--mask_ratio", default=0.5, type=float, help="mask ratio in bert")
parser.add_argument("--adaptive_window", action='store_true',
help="if true, window size is the length of sequences")
parser.add_argument("--deepsvdd_loss", action='store_true', help="if calculate deepsvdd loss")
parser.add_argument("--deepsvdd_loss_test", action='store_true', help="if use deepsvdd for prediction")
parser.add_argument("--scale", default=None, help="sklearn normalization methods")
parser.add_argument("--hidden", type=int, default=256, help="hidden size in logbert")
parser.add_argument("--layers", default=4, type=int, help="number of layers in bert")
parser.add_argument("--attn_heads", default=4, type=int, help="number of attention heads")
parser.add_argument("--num_workers", default=5, type=int)
parser.add_argument("--adam_beta1", default=0.9, type=float)
parser.add_argument("--adam_beta2", default=0.999, type=float)
parser.add_argument("--adam_weight_decay", default=0.00, type=float)
# deeplog, loganomaly & logrobust
parser.add_argument("--sample", default="sliding_window", help="split sequences by sliding window")
parser.add_argument("--history_size", default=10, type=int, help="window size for deeplog and log anomaly")
parser.add_argument("--embeddings", default="embeddings.json", help="template embedding json file")
# Features
parser.add_argument("--sequentials", default=True, help="sequences of logkeys")
parser.add_argument("--quantitatives", default=True, help="logkey count vector")
parser.add_argument("--semantics", default=False, action='store_true', help="logkey embedding with semantics "
"vectors")
parser.add_argument("--parameters", default=False, help="include paramters in logs after parsing such time")
parser.add_argument("--input_size", default=1, type=int, help="input size in lstm")
parser.add_argument("--hidden_size", default=128, type=int, help="hidden size in lstm")
parser.add_argument("--num_layers", default=2, type=int, help="num of lstm layers")
parser.add_argument("--embedding_dim", default=50, type=int, help="embedding dimension of logkeys")
parser.add_argument("--accumulation_step", default=1, type=int, help="let optimizer steps after several batches")
parser.add_argument("--optimizer", default="adam")
parser.add_argument("--lr_decay_ratio", default=0.1, type=float)
parser.add_argument("--num_candidates", default=9, type=int, help="top g candidates are normal")
parser.add_argument("--log_freq", default=100, type=int, help="logging frequency of the batch iteration")
parser.add_argument("--resume_path", action='store_true')
# neural_log
parser.add_argument("--num_encoder_layers", default=1, type=int, help="number of encoder layers")
parser.add_argument("--num_decoder_layers", default=1, type=int, help="number of decoder layers")
parser.add_argument("--dim_model", default=300, type=int, help="model's dim")
parser.add_argument("--num_heads", default=8, type=int, help="number of attention heads")
parser.add_argument("--dim_feedforward", default=2048, type=int, help="feed-forward network's dim")
parser.add_argument("--transformers_dropout", default=0.1, type=float, help="dropout rate of transformers model")
return parser
def main():
# seed_everything(seed=int(time.clock()))
parser = arg_parser()
args = parser.parse_args()
args.data_dir = os.path.expanduser(args.data_dir + args.folder)
args.output_dir += args.folder
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
# sampling raw logs
if args.sample_size is not None:
sample_step_size = 10 ** 4
sample_raw_data(args.data_dir + args.log_file, args.data_dir + args.sample_log_file, args.sample_size,
sample_step_size)
args.log_file = args.sample_log_file
# parse logs
if args.parser_type is not None:
args.log_format = " ".join([f"<{field}>" for field in args.log_format.split(",")])
parse_log(args.data_dir, args.output_dir, args.log_file, args.parser_type, args.log_format, args.regex,
args.keep_para,
args.st, args.depth, args.max_child, args.tau)
options = vars(args)
if options['session_level'] == "entry":
options["output_dir"] = options["output_dir"] + str(int(options["window_size"])) + "/"
if args.is_process:
process_dataset(data_dir=args.data_dir, output_dir=options["output_dir"], log_file=args.log_file,
dataset_name=args.dataset_name, window_type=args.window_type,
window_size=args.window_size, step_size=args.step_size,
train_size=args.train_size, random_sample=args.random_sample, session_type=args.session_level)
if args.is_instance:
process_instance(data_dir=args.data_dir, output_dir=args.output_dir, train_file=args.train_file,
test_file=args.test_file)
# if options['session_level'] == "entry":
# options["output_dir"] = options["output_dir"] + str(options["window_size"]) + "/"
options["model_dir"] = options["output_dir"] + options["model_name"] + "/"
options["train_vocab"] = options["output_dir"] + "train.pkl"
options["vocab_path"] = options["output_dir"] + options["model_name"] + "_vocab.pkl" # pickle file
options["model_path"] = options["model_dir"] + options["model_name"] + ".pth"
options["scale_path"] = options["model_dir"] + "scale.pkl"
if not os.path.exists(options["model_dir"]):
os.mkdir(options["model_dir"])
print("Save options parameters")
save_parameters(options, options["model_dir"] + "parameters.txt")
if args.model_name == "logbert":
run_logbert(options)
elif args.model_name == "deeplog":
run_deeplog(options)
elif args.model_name == "loganomaly":
run_loganomaly(options)
elif args.model_name == "logrobust":
run_logrobust(options)
elif args.model_name == "cnn":
run_cnn(options)
elif args.model_name == "plelog":
run_plelog(options)
elif args.model_name == "baseline":
pass
elif args.model_name == "neurallog":
run_neuralog(options)
else:
raise NotImplementedError(f"Model {args.model_name} is not defined")
if __name__ == "__main__":
main()